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ABSTRACT
Full covariance acoustic models trained with limited training

data generalize poorly to unseen test data due to a large num-

ber of free parameters. We propose to use sparse inverse co-

variance matrices to address this problem. Previous sparse

inverse covariance methods never outperformed full covari-

ance methods. We propose a method to automatically drive

the structure of inverse covariance matrices to sparse during

training. We use a new objective function by adding L1 reg-

ularization to the traditional objective function for maximum

likelihood estimation.The graphic lasso method for the esti-

mation of a sparse inverse covariance matrix is incorporated

into the Expectation Maximization algorithm to learn parame-

ters of HMM using the new objective function. Experimental

results show that we only need about 25% of the parameter-

s of the inverse covariance matrices to be nonzero in order

to achieve the same performance of a full covariance system.

Our proposed system using sparse inverse covariance Gaus-

sians also significantly outperforms a system using full co-

variance Gaussians trained on limited data.

Index Terms— sparse inverse covariance matrix, speech

recognition, graphic lasso,expectation maximization

1. INTRODUCTION

Acoustic models trained tend to over fit when there is not e-

nough training data as the model has too many parameters

relative to the amount of observed data, especially when full

covariance matrices are used. An over-fitting model will gen-

eralize poorly to unseen test data. Typical approaches to solve

this problem include using state tying methods where data

from both resource poor and resource rich genre of speech

are shared.

Another approach is to explicitly compact the models.

Various heuristic methods such as subspace Gaussian mixture

models (SGMM [1]) and subspace for precision and mean

models (SPAM [2]) were previously proposed for model com-

paction. [3] first proposed to model the inverse covariance

matrices with a sparsity structure. If the ijth component of

the inverse covariance matrix is zero, then variables i and j
are conditionally independent, given the other variables. S-

parse inverse covariance matrices also lead to computational

advantage since the Gaussian likelihoods are evaluated as a

quadratic form determined by the inverse covariance matri-

ces. Unfortunately no results related to sparse inverse covari-

ance matrices were presented in [3]. [4] proposed to heuris-

tically choose the locations of zeros in the inverse covariance

matrices based on the conditional mutual information of t-

wo random variables. Results showed that only about 70%

of the parameters of a full covariance system are needed to

achieve the same performance. However, in [4] the sparse

inverse covariance systems never outperform the full covari-

ance systems if the locations of zeros in the inverse covariance

matrices are set before training, using the methods proposed.

In machine learning, regularization terms are usually

added to the objective function to penalize complex models

or to impose prior knowledge. One popular type of regular-

ization is l1 regularization which results in sparse models.

These simple sparse models tend to generalize well to unseen

test data. Recently, [5] solved the problem of estimating a

sparse inverse matrix when the training data is assumed to

be drawn from a Gaussian distribution and used it for model

selection. [6] proposed a more efficient way– the graphic las-
so– for the estimation of a sparse inverse covariance matrix.

By using graphic lasso and Expectation Maximization (EM

[7]), we propose a method to automatically learn the sparse

structure of the inverse covariance matrices for low resource

acoustic model training in this paper.

The rest of this paper is organized as follows. In section

2, we show how the sparse inverse covariance matrices can be

learned automatically. We elaborate the new objective func-

tion and how to maximize it using EM algorithm. The experi-

ment results are given in section 3. Finally the conclusion and

future work are stated in section 4.
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2. AUTOMATIC LEARNING OF SPARSE INVERSE
COVARIANCE MATRICES

We propose to automatically learn sparse inverse covariance

matrices using Expectation Maximization and graphic lasso
as follows. An l1 penalty term is added to the traditional ob-

jective function (see equation(1)) for maximum likelihood es-

timation (MLE) in order to automatically drive the structure

of the inverse covariance matrices to sparse. This new objec-

tive function is then maximized using EM algorithm. Details

are given below.

Suppose we have a HMM-based acoustic model P (O|Θ)
that is governed by a set of parameters Θ. We also have

observation sequences O that is supposed to be drawn from

this distribution. The traditional maximum likelihood estima-

tion method is to find the parameters that maximize the log

likelihood function log(P (O|Θ)), that is

Θ̂ = argmax
Θ

{log(P (O|Θ))}. (1)

We propose to add an l1 penalty in order to automatically

drive the learned precision matrices (inverse of the covari-

ance matrices) to sparse. Thus the following new objective

function to be maximized is considered

L(Θ) = log(P (O|Θ))−
S∑

s=1

Ms∑

l=1

λsl||Csl||1, (2)

where || · ||1 denotes the l1 norm of a matrix (i.e. the sum of

the absolute values of the elements of the matrix), S is the

number of states in HMM, Ms is the number of Gaussian

components in state s, Csl is the precision matrix of the lth

mixture component in state s and λsl is a user defined hyper-

parameter. It can be seen that maximizing the new objective

function is equivalent to a maximum a posteriori (MAP) pro-

cedure by using the following Laplace priors on the inverse

covariance matrices

p(Csl|λsl) =
λsl

2
exp(−λsl||Csl||1).

Since the new objective function (2) is expensive to eval-

uate, exact maximization is intractable. We try to use the EM

algorithm to find a local optima [8]. The procedure of using

EM is first to obtain an auxiliary function that is the lower

bound of the objective function. Iteratively maximizing (or

increasing) this auxiliary function guarantees the increase of

the target objective function. The following auxiliary function

is defined

Q(Θ,Θ′) =
∑

q∈Q

∑

m∈M

logP (O, q,m|Θ)P (O, q,m|Θ′)

−
S∑

s=1

Ms∑

l=1

λsl||Csl||1,
(3)

where P (O, q,m|Θ) is the likelihood of generating O using

the state sequence q and the Gaussian components in each

state indicated by m; Θ′ is our previous estimate of the pa-

rameters. By using Jensen’s inequality, we can get

L(Θ)− L(Θ′) ≥ Q(Θ,Θ′)−Q(Θ′,Θ′), (4)

meaning that Q(Θ,Θ′) − Q(Θ′,Θ′) is a lower bound of

L(Θ) − L(Θ′). Thus if a value Θ satisfies Q(Θ,Θ′) >
Q(Θ′,Θ′),then L(Θ) > L(Θ′). Therefore the mode of the

objective function L(Θ) can be estimated by iteratively max-

imizing the auxiliary function Q(Θ,Θ′).
Expanding logP (O, q,m|Θ)P (O, q,m|Θ′) in equation

(3) as that in [8] and group different types of parameters (e.g.

initial distributions and transition probabilities) together, we

can see that the training procedures for the HMM parameters

are the same as MLE method except the precision matrices.

Further more, by eliminating irrelevant constants, the auxil-

iary function for the estimation of precision matrices is

Q(C,C′) =
S∑

s=1

Ms∑

l=1

T∑

t=1

(log|Csl| − tr((ot − μsl)·

(ot − μsl)
′Csl))γslt −

S∑

s=1

Ms∑

l=1

λsl||Csl||1

=

S∑

s=1

Ms∑

l=1

(γsllog|Csl| − γsltr(SslCsl)− λsl||Csl||1)

=

S∑

s=1

Ms∑

l=1

γsl(log|Csl| − tr(SslCsl)− λsl

γsl
||Csl||1)

=

S∑

s=1

Ms∑

l=1

γslQ(Csl,C
′
sl)

(5)

where | · | denotes the determinant of a matrix, tr(·) denotes

the trace of a matrix and the quantity γslt

γslt = p(qt = s,mst = l|O,Θ′)

is the posteriori probability of occupying the lth Gaussian

component in state s at time t given observation O is gener-

ated; γsl is defined as

γsl =
T∑

t=1

γslt.

μsl and Csl are the mean and precision matrix of the lth Gaus-

sian component in state s. Ssl and Q(Csl,C
′
sl) are defined

as below

Ssl =

∑T
t=1(ot − μsl)(ot − μsl)

′γslt
γsl

Q(Csl,C
′
sl) = log|Csl| − tr(SslCsl)− λsl

γsl
||Csl||1.
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From equation (5), we can see that maximizing Q(C,C′)
is equivalent to maximizing each individual Q(Csl,C

′
sl).

Because λsl is a user defined hyperparameter, finding Ĉsl

that maximize Q(Csl,C
′
sl) is equivalent to finding Ĉsl that

satisfies

Ĉsl = argmax
Csl

{log|Csl| − tr(SslCsl)− λsl||Csl||1}. (6)

This can be solved by using the graphic lasso program[6]. In

this paper we only investigate global penalization (i.e. one λ
for all Gaussian components in equation (6)).

It is worth mentioning that we can even modify the ob-

jective function to penalize each element in the inverse co-

variance matrices differently. Then the optimal Csls can be

found by using

Ĉsl = argmax
Csl

{log|Csl| − tr(SslCsl)− ||Csl ∗Psl||1},

where ∗ indicates componentwise multiplication and Psl =
{λij}sl with λij = λji is a user defined penalization matrix.

This can also be solved by using the graphic lasso program.

When all the elements inside Psl are zero, this is equivalent

to training a full covariance system. When the diagonal ele-

ments of Psl are set to zero while others are set to infinity, the

system trained is a diagonal covariance system.

3. EXPERIMENTAL SETUP AND RESULTS

The SI-84 database (about 14.5 hours) from WSJ0 was used

as our training material. To see how the performance was af-

fected by the size of the training data, we also randomly sam-

pled 1 hour, 3 hours, 5 hours and 10 hours of data from the

SI-84 database. The Nov’92 data was used as the evaluation

data set. The audio data was represented by d = 39 feature

vectors every 10ms: 12MFCC plus c0 with ceptral mean sub-

straction and delta and acceleration coefficients.

We have run experiments using the standard bigram lan-

guage model provided by the LDC. The pronunciation infor-

mation came from the CMU dictionary. Cross-word triphone

models were used and all HMMs had three emitting states and

a strictly left-to-right topology. The HTK tool was used in our

experiments [9].

3.1. Performance affected by varying λs

To see how the system performance was affected by different

λs, we first trained systems with one mixture component per

state and with different λs using the randomly sampled one

hour database. The word error rates (WER) on the evalua-

tion set are shown in Figure 1. The results are plotted against

the percentage of nonzero parameters relative to the full co-

variance matrices (average number of nonzero parameters in

the sparse upper triangular matrix divided by d*(d+1)/2). The

corresponding λs are also given. As can be seen from the

plot, with λ increasing, more parameters of the inverse co-

variance matrices are driven to zero. The left-most point on

the plot corresponds to a system with diagonal covariance ma-

trices. The right-most point corresponds to a system with full

covariance matrices.
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Fig. 1. Word error rate on the evaluation data with varying

λs.

From this plot, we can see that sparse inverse covariance

systems can substantially outperform full covariance system-

s. With λ equal to 0.4, the absolute improvement is 3.6%.

It also shows that only about 25% of the parameters of the

inverse covariance matrices are needed to achieve the same

performance of a full covariance system.

3.2. Performance affected by training data size

We also investigated the performance affected by the size of

the training data. We trained a diagonal covariance system

on the SI-84 database that got its peak performance with 8

mixture components per state (624 Gaussian parameters per

state). To avoid vast increase of free parameters, all the sys-

tems described in this section are trained with 2 mixture com-

ponents per state (1638 Gaussian parameters per state for ful-

l covariance systems). In the above experiments, we found

that setting λ to 0.4 leads to good performance. Thus in the

following experiments, λ was always set to 0.4. We trained

systems with different amount of training data. The results

are showed in Figure 2. When the training data is very sparse

(e.g. 3 hour), the diagonal covariance systems seems better

than the full covariance systems. However, as more training

data is available, the full covariance systems outperform the

diagonal covariance systems with the same number of mix-

ture components per state. The plot also shows that the sparse

inverse covariance systems consistently work better than the

full covariance and the diagonal covariance systems. We also
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found that when the training data is sparse (e.g. 3 hours and

5 hours) the absolute improvement achieved by using sparse

inverse covariance matrices is much more, compared with the

performance improvement achieved when more training data

is available. This is because when the training data is sparse

the full covariance systems tend to be over-fitting and gen-

eralize poorly to unseen test data. By adding a penalization

term to the objective function to penalize complex models, the

systems generalize much better. Using all the SI-84 data, the

word error rate of the system with sparse covariance matrices

with only two mixture components per state is 5.94%. This

is even better than the best performance (WER:6.17%) that

we can get with a diagonal covariance system with 8 mixture

component per state trained on the same data.
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Fig. 2. Comparisons of systems with diagonal, full and sparse

inverse covariance matrices with different amount of training

data. All λs are set to 0.4 during the training of sparse inverse

covariance systems.

4. CONCLUSION AND FUTURE WORK

In this paper, We address the problem of low resource acous-

tic model training by considering sparse inverse covariance

matrices. We propose to add an l1 penalization term to the tra-

ditional objective function for MLE in order to automatically

drive the inverse covariance matrices to sparse. The graph-
ic lasso algorithm is incorporated into the EM procedure to

learn parameters of HMM using the new objective function.

The experimental results show that the sparse inverse

covariance systems consistently work much better than the

full covariance systems, especially when the training data is

sparse. Our results also show that only about 25% of the

parameters of the inverse covariance matrices are needed to

achieve the same performance of full covariance systems.

Since many of the elements inside the inverse covariance

matrices are driven to zero, much less computation is needed.

In the future, we would like to investigate how to improve

the computation and memory efficiency of acoustic models by

using sparse inverse covariance matrices. We will also inves-

tigate different penalization methods, for example, the value

of λs depend on the size of data available for the particular

state or to smooth off the diagonal as proposed in [10].
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