
ADAPTIVE BOOSTING FEATURES FOR AUTOMATIC SPEECH RECOGNITION

Kham Nguyen†, Tim Ng, and Long Nguyen

BBN Technologies, 10 Moulton Street, Cambridge, MA 02138, USA
† Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA

knguyen@ece.neu.edu, {tng,ln}@bbn.com

ABSTRACT

In this paper, we present a method to extract probabilistic acoustic
features by using the Adaptive Boosting algorithm (AdaBoost). We
build phoneme Gaussian mixture classifiers, and use AdaBoost to
enhance the classification performance. The outputs from AdaBoost
are the posterior probabilities for each frame given all phonemes.
Those posterior features are then used to train a new acoustic model
in a similar way as the original features. The gains are obtained when
we combine them with the baseline features PLP. Adaboost systems
for both Arabic and Mandarin have contributed gains on the final
system combination in the GALE evaluation of 2011.

Index Terms— Adaptive Boosting, Posterior features, Gaussian
mixture classifiers

1. INTRODUCTION

The traditional acoustic features such as PLP and MFCC widely
used in most automatic speech recognition (ASR) systems do not
carry phoneme information explicitly. In recent years, Multi-Layer
Perceptrons have been used to extract discriminative features. The
final posterior probabilities from the output layer, or any intermedi-
ate layer, are then used as new features to train acoustic models for
ASR systems. Yu and Deng have developed a deep neural-net tech-
nique (DNN) [1] using an MLP with higher number of layers. Even
though DNN technique produces better performance, it has a scal-
able problem for large amount of training data. The scalable problem
is solved by the deep convex network (DCN) technique, where each
DCN includes a number of modules and the modules can be trained
in parallel with convex optimzation. Another method to extract dis-
criminative features by using Adaptive Boosting algorithm[2] was
proposed by Pei Yin[4]. In their work, they used decision trees as
“base” classifiers. The final features were used in various recogni-
tion applications with good improvements.

In this work, we build the Gaussian mixture based classifier to
convert each acoustic feature vector to a posterior probability vector
given all the phonemes. To enhance the performance of the Gaus-
sian mixture classifiers, we apply the adaptive boosting (AdaBoost)
algorithm to combine the GMM-based classifiers. We also develop
a parallel technique where the whole training process is done in par-
allel so that the training latency can be feasible even for very large
systems. The output phoneme posteriors obtained by this AdaBoost
algoritm with GMMs are used in place of or in addition to the tradi-
tional PLP features to train the acoustic model.

The rest of the paper is organized as follows. In section 2, we
review the AdaBoost algorithm and propose our newly-developed
multiclass AdaBoost algorithm for GMMs. Section 3 will describe
the experimental results. Section 4 will concludes the paper.

2. ADAPTIVE BOOSTING

Adaptive Boosting (AdaBoost) was introduced by Freund and
Shapire in 1997 as a meta-algorithm to combine classifiers and gen-
erate outputs that are more accurate than any individual classifier[2].
These individual classifiers, also known as weak learners in Ad-
aBoost lingo, need not be of the same form and/or structure. The in-
put to the algorithm is a set of N labeled samples (x1, y1), (x2, y2),
..., (xN , yN) as training data, where xi is a sample instance and yi

is the sample label or the truth. During iterative training, the total
sum of the weights for all training samples stays constant at 1 at
each iteration, i.e.

PN
i=1 wt

i = 1. At the beginning, all weights are
set equally to 1/N . Misclassified samples caused by classifier ht

at iteration t are assigned bigger weights so that the next classifier
ht+1 at iteration t + 1 will focus more on these hard samples. Note
that, this meta-algorithm implicitly assumes that classifier ht+1

would have been trained/updated using the same training data but
with the non-uniform weights derived from the classification per-
formance of classifier ht at iteration t. In addition to the sample
weights that are changed between iterations, each classifier ht is
assigned a weight βt computed from the total error (or pseudo loss)
εt when ht was evaluated on all training samples at iteration t.
Without loss of generality, assume we are dealing with a 2-class
classification problem, i.e. yi ∈ {0, 1}, then the hypothesis ht(x) is
a binary mapping ht(x) : x → {0, 1}. The final output of the Ad-
aBoost meta-algorithm for a binary case is the weighted summation
of all iteration classification hypotheses as shown in the following
equation.

H(x) =

PT
t=1(log 1

βt
)ht(x)

PT
t=1 log 1

βt

(1)

where, βt = εt
(1−εt)

, the classifier’s weight, and

εt = 1
N

PN
i=1 |ht(xi) − yi|, the classifier’s total error.

2.1. Example of a 2-Class Problem Using AdaBoost

To illustrate the steps and strength of the AdaBoost algorithm, we
would like to present Schapire’s toy example again here in Figures
1 and 2. In this simple example, we aim to classify all the training
samples with two labels, red and blue in Fig. 1. We can see that the
data is not separable by a straight-line classifier. By using AdaBoost,
we can combine three weak classifiers to classify the data perfectly.
At the first iteration in Fig. 2(a), the weak learner h1 is the vertical
line. It classifies 10 samples to two groups, with blue on the left and
red on the right. Three out of the 10 samples (samples 5, 6, and 8)
are misclassified. With uniform weights, the error of the iteration is
ε1 = 0.3, and the weight β1 is computed accordingly. The weights

4733978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig. 1. 2-D data points.

Fig. 2. h1, h2, h3 classifiers and combined (h1, h2 and h3)

of training samples are also changed properly in which the weights
of the three misclassified samples are increased, while the weights
of the rest are decreased. The weak learner is called at the second
iteration in Fig. 2(b) with new sample weights. This time, the mis-
classified samples are 3, 4, and 7. The error ε2 is 0.21, instead of
0.3, due to the weighted samples. Similarly, the third classifier is the
horizontal line in Fig. 2(c). The outputs of the three weak learners
are then combined with weights βt, and we can see that the data is
classified correctly for all samples in Fig. 2(d) using the combined
green zig-zag line segments. [A thorough analysis of this illustra-
tion can be found on the web by searching for Schapire’s boosting
tutorial.]

2.2. Multiclass AdaBoost for Automatic Speech Recognition

As mentioned before, instead of using MLP to derive phoneme pos-
teriors, we explore using multi-class AdaBoost to derive phoneme
posteriors as probabilistic acoustic features for automatic speech
recognition. Assume the phoneme set in our speech recognition
system has k phonemes. Given each speech frame, we want to
derive a k-dimensional vector of phoneme posteriors, one for each

phoneme. The simplest approach could be using a Gaussian mixture
model (GMM) for each phoneme. Each GMM is estimated using
all speech frames aligned to that phoneme. The resulting model is
then just one set of k GMMs. However, we believe that we could
do better by having T sets of GMMs using adaptive boosting with
T iterations such that the GMM set obtained in iteration t is capable
of circumventing the misclassifications in iteraton t − 1.

In this multiple phonetic class AdaBoost using GMM formula-
tion, we can denote the phoneme posterior probability of sample x
for phoneme y as

ht(x|y) =

P
j mj

yN j
y (x)

P
c

P
j mj

cN j
c (x)

(2)

where N j
y (x) is the mixture component Gaussian density value for x

of component j of the GMM for phoneme y, and mj
y is the mixture

weight of component j of the GMM for phoneme y.
The final output of this multi-class AdaBoost using GMMs

is a series of k H(x|y), one for each phoneme y of the set of k
phonemes, of the form:

H(x|y) =

PT
t=1(log 1

βt
)ht(x|y)

PT
t=1 log 1

βt

(3)

2.2.1. Multiclass AdaBoost Parallel Algorithm

We can partition all of the training data into k disjoint subsets, one
for each phoneme, i.e. each data subset consists of only speech
frames having the same phoneme label. We can then divide the mul-
ticlass AdaBoost training procedure into two stages. The first stage
will be done in k parallel processes, one for each phoneme, in which
the algorithm goes over only the data subset of that phoneme to es-
timate the phoneme-specific GMM and saves other relevant data for
the calculation of the total pseudoloss in the second stage. The two
stages of this algorithm are explained in the pseudo code below:

For each iteration t:

• Stage 1: For each class c in parallel, weight and train:

t = 0: Dt(x, y) = 1/(n − 1), y �= c, else 0, where n is the
size of the data subset.

t > 0: Dt(x, y) = Dt−1(x, y)/Zt−1∗β(1+h(x|c)−h(x|y))/2
t−1

(4)

- weight sample x with weight wt(x) =
P

y Dt(x, y)

- train a new GMM for class c with weighted samples

- compute un-normalized pseudoloss
εc

t = 1/2
P

j

P
y Dt(x, y)(1 − h(x|c) + h(x|y))

- store the class normalizer Zc =
P

j

P
y Dt(xj , y)

• Stage 2: Synchronize (after all proceses in Stage 1 finished)

- compute total normalizer Zt =
P

c Zc

- compute total psuedoloss εt =
P

c εc
t/Zt

- compute classifier weight for the iteration βt = εt
1−εt

(5)

During the training for each class, the un-normalized pseudoloss εc
t

is computed and is normalized afterward, and that’s why the proce-
dure can be done in parallel. The total pseudoloss will be normalized
after the value of the total normalizer is computed. One of the ter-
mination conditions is that the total psuedoloss is less than 0.5, and
by using (5) we have the iteration weight βt less than 1. In formula

4734

(4) of distribution Dt(x, y), we can see that when the likelihood
value of h(x|y) is “large” relatively compared to the likelihood of
the truth h(x|c), or the sample is not classified correctly, the distri-
bution Dt(x, y) will increase relatively compared with other sam-
ples in the class since βt is less than 1. That means the total weight
of the sample will increase relatively compared to the other samples,
which makes the sample to be emphasized more in the next iteration.

3. EXPERIMENTAL RESULTS

3.1. Experimental Data

To study the behaviour of the multiclass AdaBoost algorithm us-
ing GMMs proposed above, we set up three data sets derived from
the big English broadcast news speech corpus used at BBN for the
EARS and GALE Programs. The first data set to be used for train-
ing comprises 50 hours of randomly selected broadcast news shows.
The second data set, also randomly selected, consists of 3 hours to
be used for cross-validation purpose. The third data set is the devel-
opment test set that consists of 3 hours of CNN’s news shows aired
in 2004. The training data set was phonetically aligned to obtain the
truth labels for training the AdaBoost model. The cross-validation
data set was also phonetically aligned to obtain the truth labels to
measure the frame classification accuracy of the AdaBoost model.
The forced alignments were obtained using one of the best English
BN systems developed in the past at BBN. However, we expected
there are errors in these alignment since it was done automatically.

3.2. AdaBoost with GMM Training

The labeled sample (xi, yi) input to the proposed multiclass Ad-
aBoost algorithm is a pair of a speech frame and its phoneme label.
Each speech frame is the standard 60-dimensional PLP feature vec-
tor (14 base cepstral and a normalized energy, together with their
first, second, and third derivatives). In Stage 1 of the algorithm,
we have 50 parallel processes for the 50 phonemes in our English
Phoneme set. The 512-component GMM for each phoneme class
are initialized by running a few iterations of the K-Means algorithm,
starting from the randomly-selected 512 samples as the initial 512
centroids. The GMM was then refined by running a few more itera-
tions of the Expectation-Maximization (EM) algorithm. Note again
that the samples used to train the GMM always use iteration-specific
sameple weights derived based on the performance of the classifiers
in the previous iteration.

3.3. Frame Classification Accuracy

Figure 3 shows the frame classification accuracy of the 512-
component GMM AdaBoost model on the cross-validation data
set as a function of the number of iterations of the training of the
AdaBoost model. We can see from the frame accuracy curve that
the multiclass AdaBoost algorithm using GMMs improves smoothly
and converges at around after 20 iterations. However, we cannot
explain the discontinuity occured at the second iteration.

To measure the effect of the number of GMM components on
the classification results, we also tried 1024- and 2048-component
GMMs. The comparison of accuracy rates using these 3 different
model sizes are shown in Table 1. On the training set, the accu-
racy rate improved by 5% absolute when doubling the number of
GMM components. However, the rate improved less than 1% abso-
lute on the cross-validation set. The reason could be overfitting when
the classifiers try to memorize the training data when the model has
more parameters.

Fig. 3. Classification Results: Frame Accuracy Rates Over Number
of Iterations.

#GMM-bins Training Cross Validation

512 44.1 42.0

1024 49.3 42.6

2048 54.2 42.8

Table 1. Frame Accuracy Rates Over Number of GMM Compo-
nents.

3.4. ASR Experiments on English Data

We carried out three automatic speech recognition (ASR) experi-
ments using three different ASR models trained on three different
sets of input features. The first baseline ASR system use the stan-
dard PLP feature vectors. This is only a speaker-independent con-
figuration without speaker and/or model adaptation. In this system,
the standard 60-dimensional feature vectors comprising the 14 base
cepstra and the normalized energy together with their first, second,
and third derivatives, are dimensionally reduced to 46 dimensions
using Linear Discriminant analysis (LDA) and then are decorrelated
using maximum likelihood linear transform (MLLT). Recognition
word error rate (WER) on the CNN test set (described above) using
this first baseline standard ASR system is showed in the first row of
Table 2.

The second baseline ASR system uses phoneme posterior prob-
abilities features derived by a Multi-Layer Perceptron (MLP) neural
network. The WER of this system is shown in the second row of
Table 2. This is the typical performance (with some degradation)
relative to standard PLP features when the MLP features are used in
place of the PLP features as reported by all ASR research sites.

The ASR experimental result produced by the third ASR system
that uses the AdaBoost features in place of the PLP features is shown
in the last row of Table 2. The AdaBoost model uses 512-component
GMMs trained with 20 iterations. To have a direct comparison to the
baseline PLP system, the 50-dimensional AdaBoost features (repre-
senting the 50 phoneme poseriors) are also dimensionally reduced
to 46 dimensions using LDA (as in the case of the PLP features)
and then decorrelated using MLLT. Similar to the situation of the
MLP features, the AdaBoost features produced higher WER than the
baseline PLP system (24.6% versus 21.1%). However, the AdaBoost
features are 0.8% absolute better than the MLP features (24.6% ver-
sus 25.4%). Again, it has been shown that probabilistic acoustic
features (such as MLP) helped only if they were used in addition
to PLP features within sophitistacated concatenation or combination
framework[5].

We also experimented with AdaBoost features using different

4735

System WER

PLP 21.1

MLP 25.4

AdaBoost 24.6

Table 2. Comparison of ASR WERs for ASR systems using PLP,
MLP, and AdaBoost Features.

numbers of phonetic classes. Instead of using 50 phoneme classes
as in the first set of experiments above, we increased the number of
phonetic classes to 99 and 300. We replaced the phoneme classes
by using clustered allophones that are phonemes in specific phonetic
contexts. When increasing the number of classes from 50 to 99,
the WER of the new AdaBoost features is reduced by 0.3% abso-
lute. The ASR performance was improved further (by 0.9% abso-
lute) when the number of phonetic classes is increased to 300. Com-
parison of these three results are in Table 3.

No. classes WER

50 24.6

99 24.3

300 23.4

Table 3. Comparison of ASR WERs using different numbers of
phonetic classes.

3.5. ASR Experiments on Arabic and Mandarin Data

Even though this was on-going work with only preliminary results
during the Phase 5 evaluation of the GALE program, we attempted
using AdaBoost features in our official GALE evaluation systems for
Arabic and Mandarin languages where we have more than a thou-
sand of hours of training data. For both systems, we combined Ad-
aBoost features with PLP features and used region dependent tran-
form (RDT) technique to reduce the merged features for HMM train-
ing. The detail of using RDT on the combined features can be found
in [5]. Note that the system that used the AdaBoost as additional fea-
tures was only as one additional system to be combined with many
other systems using ROVER combination.

As can be seen in Table 4, the comparison of the two ROVER
results, ROVER4 of 4 systems without AdaBoost features and
ROVER5 of 4 previous systems and the additional system that used
AdaBoost features, shows that AdaBoost features contributed to the
reduction of 0.1% absolute in character error rates (CER) for test
sets cd10c and cd10d for the Mandarin language while there are no
degradations in other test sets.

System cd9s ce9s cd10c cd10r cd10d

ROVER4 7.8 7.2 12.3 7.9 24.6

ROVER5 7.8 7.2 12.2 7.9 24.5

Table 4. ROVER results for Mandarin data without and with Ad-
aBoost system.

Similarly for the Arabic language, we constructed the 12th sys-
tem in which we used the AdaBoost features to combine with the
other 11 systems also produced a modest 0.1% absolute reduction in
word error rate (WER) for the three test sets ad9s, ae9s, and ad10c,

while there were no degradations in the other test sets. The com-
parison of the WERs of the two ROVER combinations are shown in
Table 5.

System ad9s ae9s ad10c ad10d ad10r

ROVER11 13.2 8.5 12.1 22.2 9.9

ROVER12 13.1 8.4 12.0 22.2 9.9

Table 5. ROVER results for Arabic data without and with AdaBoost
system.

4. CONCLUSION

In this paper, we presented the multiclass AdaBoost algorithm for
GMMs to extract phoneme posterior features and its usage for ASR.
Firstly, compared to the “base” classifier of GMM, [AdaBoost with
only the first iteration with equal sample’s weights], the AdaBoost
for GMM has shown improvement in classification results. When we
increase the number of GMM components as well as the number of
training iterations, the classification results also improve. Secondly,
the output features have been used to train ASR systems with some
reasonable results. The gains were obtained when we tried combin-
ing AdaBoost with PLP features using RDT training. The AdaBoost
systems for both Arabic and Mandarin have been used for GALE
evaluation in 2011.

5. ACKNOWLEDGMENTS

This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under Contract No.
HR0011-06-C-0022. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA or its Contracting
Agent, the U.S. Department of the Interior.

6. REFERENCES

[1] Li Deng and Dong Yu, “Deep Convex Network: A Scalable
Architecture for Speech Pattern Classification,” in Proceedings
of Interspeech, Florence, Italy, August 2011

[2] Yoav Freund and Robert Schapire, “A decision-theoretic gen-
eralization of on-line learning and an application to boosting”,
Journal of Computer and System Sciences, 1997.

[3] G. Zweig and M. Padmanabhan, “Boosting Gaussian Mixtures
in an LVCSR System,” in Proceedings of ICASSP, Istanbul,
Turkey, June 2000.

[4] Pei Yin, Irfan Essa, Thad Starner, James M. Rehg “Discrim-
inative Feature Selection For Hidden Markov Models Using
Segmental Boosting,” in Proceedings of ICASSP, Las Vegas,
Nevada, May 2008.

[5] T. Ng, B. Zhang, and L. Nguyen, “Jointly optimized discrim-
inative features for speech recognition,” in Proceedings of In-
terSpeech, Makuhari, Chiba, Japan, September 2010.

[6] B. Zhang, S. Matsoukas, and R. Schwartz, “Discriminatively
trained region-dependent transform for speech recognition,” in
Proceedings of ICASSP, Toulouse, France, May 2006.

4736

