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ABSTRACT

We propose a chunk-based phonetic score for re-scoring word hy-
potheses for the mobile voice search task. The score is based
on a novel technique for aligning decoded phone sequences with
forced-alignments of hypothesized word sequences and exploits
phone-boundary timing information. In experimental results, we
find that the proposed approach results in relative a word error rate
reduction of 4.4% and a relative sentence error rate reduction of
2.3% for the Windows live search for mobile task [1].

Index Terms— voice search, phonetic score, pronunciation
modeling

1. INTRODUCTION

As mobile voice search services become widespread, increasingly
large amounts of acoustic data become available. The most straight-
forward use of this data is to train larger acoustic models. However,
the gains obtained from such an approach have been shown to result
in diminishing returns in previous studies [2].

Recognizing large vocabulary conversational speech continues
to remain a challenging problem for automatic speech recognition
(ASR) systems. Conversational speech is characterized by disflu-
encies and pronunciation variability. As a result of this “sloppy”
articulation, the surface pronunciation can differ markedly from
the expected canonical pronunciation. Evidence from a study by
McAllaster et al. [3] indicates that pronunciation variation is one
of the main causes of poor performance of ASR systems on con-
versational speech: in oracle experiments, when data is sampled
from acoustic models, error rates were found to be significantly
lower (5-10%) when the sampled data corresponds to the dictionary
pronunciation than when the data was sampled according to phone
transcripts corresponding to the utterance (40%).

There is reason to believe that adding more training data to a
traditional speech recognition system will not address this problem.
While context-dependent modeling (for example, using triphones)
can account for some of the variation, such an approach has its lim-
itations. It has been shown previously by Jurafsky et al. [4] that
while triphone-based systems capture phone substitutions, they do
not model insertions and deletions well.

One approach to modeling pronunciation variation is to add vari-
ant pronunciations to the lexicon; the variant pronunciations may be
learned automatically from the data or else based on prior linguistic
knowledge [5]. In this work, however, we take an alternative ap-
proach. We use a large (4.5M+) corpus of transcribed utterances to
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learn patterns of variation between the forced-alignment of the ref-
erence word hypothesis, corresponding to the canonical pronuncia-
tion, and a phonetic decoding of the utterance, which can be thought
of as an estimate to the surface pronunciation. In our system, the
standard acoustic-model (AM) and language-model (LM) scores are
augmented with a phonetic score that is computed over phone se-
quences corresponding to the forced-alignment of a hypothesized
word sequence (qw) and a phonetic decoding of the utterance (qx).

Our approach is similar, in spirit, to previous work on learn-
ing non-parametric pronunciation models [6], learning context-
dependent string edit distances [7] and phone-to-word transduc-
tion [8]. The novelty of our approach, distinguishing it from previ-
ous methods [6, 7], lies in the fact that we do not treat qw and qx

simply as sequences of phonetic labels: we explicitly exploit timing
information associated with phone-boundaries in these sequences,
which may be easily obtained as part of the forced-alignment or
phonetic decoding process. In addition, the proposed approach nat-
urally incorporates long-span context since it is defined in terms of
contiguous sequences of phonetic labels - which we term as chunks
- similar to the multigram model of Deligne et al. [9].

2. NOTATION AND PRELIMINARIES

Let qw = (qw
1 , q

w
2 , · · · , qw

M ) and qx = (qx
1, q

x
2, · · · , qx

N ) be the
phone sequences corresponding to a forced-alignment of the word
hypothesis and the phonetic decoding respectively, where each
qw
i , q

x
j ∈ Q, the set of phones for the task. Each phone q, is asso-

ciated with a start-time - start(q) - and a corresponding end-time
- end(q) - representing the hypothesized time-boundaries for the
phone.

Given a particular decoded phone sequence, qx, we denote a
segmentation s of qx by s ∼ qx. Informally, a segmentation splits
up qx into contiguous sequences of phonetic labels which are non-
overlapping and span the entire length of qx. Stated formally, a seg-
mentation s of qx can be written as,

s = 〈s1, s2, · · · , sK〉 = 〈(r1, t1), (r2, t2), · · · , (rK , tK)〉 (1)

where each component of the segmentation, si, is termed as a seg-
ment and consists of a starting index ri and an ending index ti that
refer to phones in qx, with |s| = K denoting the number of seg-
ments in the segmentation. In any valid segmentation, the first seg-
ment must begin at the first index (r1 = 1), the last segment must
end at the last index (tK = N ), consecutive segments must follow
each-other and be non-overlapping (Equation 2 below) and segments
must have positive lengths (Equation 3).

ri = ti−1 + 1 1 < i ≤ K (2)

ri ≤ ti 1 ≤ i ≤ K (3)
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Thus, a segmentation, s ∼ qx, splits qx into |s| chunks: the ith chunk
of qx is defined as qx

si =
〈
qx
ri , q

x
ri+1, · · · , qx

ti

〉
. Finally, we denote

by qx
s the entire sequence of segments corresponding to the decoded

phone sequence : qx
s =

〈
qx
s1 ,q

x
s2 , · · · ,qx

sK

〉
.

In defining our phonetic score, given a segmentation of the
phonetic decoding, we would like to associate chunks, qx

si , of the
phonetic decoding with corresponding chunks from qw. In previ-
ous work, these have been computed directly using Levenshtein
alignments between the two sequences [7] or using similar dynamic
programming-based string alignments with learned edit costs [6]. In
contrast to these approaches, our model directly utilizes the timing
information associated with individual phones in the segmentations
in order to determine corresponding chunks. Observe that a seg-
mentation s ∼ qx induces a segmentation in qw as well: we define
the ith chunk induced in qw as the minimal contiguous sequence of
phones in qw whose time-extent completely contains the ith segment
qx
si . More formally, we define a corresponding segmentation of qw

as,
sw =

〈
sw
1 , · · · , sw

|s|
〉
=

〈
(u1, v1), · · · , (u|s|, v|s|)

〉
(4)

where, ui and vi are the start and end indices for the ith component
of the segmentation, satisfying the following constraints:

ui = argmax
1≤j≤M

{
start(qw

j ) ≤ start(qx
si)

}
1 ≤ i ≤ |s| (5)

vi = argmin
1≤j≤M

{
end(qw

j ) ≥ end(qx
si)

}
1 ≤ i ≤ |s| (6)

We use the notation qw
sw
i

to denote the ith chunk of qw correspond-

ing to the ith induced segment sw
i . Finally, we denote the entire se-

quence of induced chunks as qw
sw =

〈
qw
sw
1
,qw

sw
2
, · · · ,qw

sw
K

〉
. Unlike

segments in s ∼ qx which are non-overlapping by definition (Equa-
tion 2-3), the induced segments in sw (and thus chunks in qw) need
not be non-overlapping. We refer to qx

si ,q
w
sw
i

as the ith chunk pair
induced by the segmentation s ∼ qx. This is illustrated in Figure 1.

3. CHUNK-BASED PHONETIC SCORE

In defining our chunk-based phonetic score, we make the simplifying
assumption that the chunk pairs are conditionally independent given
the segmentation s.

p(qw
sw ,qx

s|s) =
|s|∏
i=1

p(qw
sw
i
,qx

si |si) (7)

We now define the phonetic score, denoted by ϕ(qw,qx), as the pos-
terior probability of the word hypothesis conditioned on the phonetic
decoding under the chunk-based model,

ϕ(qw,qx) = p(qw|qx) =
p(qw,qx)

p(qx)
(8)

=

∑
s

∏|s|
i=1 p(q

w
sw
i
,qx

si |si)p(s)∑
s

∏|s|
i=1 p(q

x
si |si)p(s)

(9)

3.1. Efficiently computing the phonetic score

The phonetic score can be computed efficiently if the prior over seg-
mentations p(s) decomposes over individual segments si. Writing,

p(s) = Z(s)
∏|s|

i=1 f(si), where f(si) ≥ 0 and Z(s) is a normal-
ization term, from Equation 9 we have,

ϕ(qw,qx) =

∑
s

∏|s|
i=1 p(q

w
sw
i
,qx

si |si)f(si)∑
s

∏|s|
i=1 p(q

x
si |si)f(si)

(10)

The phonetic score can be computed using a dynamic programming
algorithm by accumulating sums corresponding to partial segmenta-
tions of the first j phones of qx, which we denote by qx

(1,j). Accu-
mulating partial sums corresponding to the numerator of Equation
10 in α(j) we have,

α(j) =
∑

s∼qx
(1,j)

|s|∏
i=1

p(qw
sw
i
,qx

si |si)f(si) (11)

=

j∑
l=j−Lmax+1

α(l − 1)p(qw
sw
(l,j)

,qx
s(l,j)

|s(l,j))f(s(l,j)) (12)

where, Lmax is the maximum allowed length of any segment in the
segmentation and s(l,j) denotes a segment starting at index l and
ending at index j in qx and sw

(l,j) is the corresponding segment in qw.
We refer to Lmax as the order of the phonetic score. Larger values
of Lmax allow the model to learn the correlations present in larger
contexts, at the expense of memory and speed. The denominator
sum in Equation 10 can be computed analogously, by accumulating
partial sums in β(j),

β(j) =
∑

s∼qx
(1,j)

|s|∏
i=1

p(qx
si |si)f(si) (13)

=

j∑
l=j−Lmax+1

β(l − 1)p(qx
s(l,j)

|s(l,j))f(s(l,j)) (14)

Once α(j) and β(j) have been computed for 1 ≤ j ≤ N , the re-

quired phonetic score can be computed as ϕ(qw,qx) = α(N)
β(N)

.

3.2. Discussion of proposed phonetic score

Intuitively, the one-best phonetic decoding, qx, can be thought of
as an approximation to the surface phonetic sequence uttered by the
speaker. The phonetic score implicitly models pronunciation vari-
ability, since the score can be interpreted as a measure of the degree
to which a given word hypothesis (in terms of its phonetic forced-
alignment) is consistent with the observed surface pronunciation (as
represented by the phonetic decoding of the acoustics).

The intuition behind our method of forming corresponding
chunk pairs in the two phone sequences is based on the following
observation: the phone boundaries of the decoded phone sequence
and the forced-alignment of the reference word hypothesis tend to
align perfectly for phones that are produced canonically. On the
other hand, mis-alignments tend to occur when the decoded phones
do not correspond to the phones in the canonical pronunciation; in
such cases, the chunks qw

sw
i

provide additional contextual informa-

tion for the phonetic environment in which the mis-match occurs.
Thus, our proposed score which also incorporates variable-length
long-span chunk-pairs allows for the computation of a phonetic
score that captures context that is intermediate between the phonetic
edit distance of [7] and the non-parametric model of [6].

4. ESTIMATING DISTRIBUTIONS OVER CHUNK-PAIRS

Following [6], we estimate the distributions over chunk pairs,
p(qw

sw
i
,qx

si |si), non-parametrically given a corpus of training ex-

amples which have been annotated with the reference word tran-
scription. We begin by computing a forced-alignment of the phones
corresponding to the reference hypothesis w to obtain the phone
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Segmentation sw (1,1) (2,2) (3,5) (5,6) (6,9)

“El Corral” qw
sil eh l k ax r ae l sil

Decoded Phones qx
sil eh l t ax r aa l sil

Segmentation s ∼ qx (1,1) (2,2) (3,4) (5,6) (7,9)

Chunk Pairs
qx
s

qw
sw

sil eh l, t ax, r aa, l, sil

sil eh l, k, ax ax, r r, ae, l, sil

Fig. 1. An example illustrating chunk pairs induced in the forced-alignment of the word hypothesis qw and the phonetic decoding of the
utterance qx. The segmentation s = 〈(1, 1), (2, 2), (3, 4), (5, 6), (7, 9)〉 ∼ qx splits the decoded phone string into five chunks. Each of these
chunks has a corresponding chunk in qw that is determined based on the hypothesized phone boundaries in the two sequences. Notice that
although chunks in qx are non-overlapping, the same is not true for chunks in qw.

sequence qw and the corresponding phonetic decoding qx for the
utterance. Assuming that |qx| = N , we can find O(N2) segments
and thus chunks in qx. Each of these chunks has a corresponding
chunk in qw as described in Section 2. If we denote by C(qw

sw ,qx
s)

the count of the number of times a chunk qw
sw occurs corresponding

to a chunk qx
s in the training examples, then we can estimate the

required distribution as,

p(qw
sw ,qx

s|s) = C(qw
sw ,qx

s)∑
qŵ

ŝŵ ,qx̂
ŝ

s.t.|ŝ|=|s|
C(qŵ

ŝŵ ,q
x̂
ŝ)

(15)

where, the denominator in Equation 15 sums over the counts of all
chunk pairs observed in the training examples, where the chunk cor-
responding to the phonetic decoding has length |s|. We emphasize
here that qx̂

ŝ represents a chunk of length |s| and qŵ
ŝŵ represents a

corresponding chunk; these do not represent entire chunk sequences.

5. EXPERIMENTS

In order to determine the effectiveness of the proposed chunk-based
phonetic score, we conducted n-best re-scoring experiments on the
Windows live search for mobile voice search task [1]. This task
consists of approximately 5000 hours of training data, 9 hours of
development data, and 13 hours of test data. For our experiments,
the entire training set was used to train both the acoustic model and
the chunk-based phonetic score model.

The overall architecture of the proposed system is presented as
Figure 2. We first perform an n-best decoding using the baseline
system to get a set of n-best word hypotheses, ranked by the acous-
tic (log p(x|qwn)) and scaled language model (γ log p(qwn ,wn))
scores derived from the baseline system, where γ is the language
model scaling parameter. The baseline system is a hidden Markov
model-based (HMM) system whose acoustic model contains 135K
diagonal Gaussian components shared by 22K states, which are in
turn shared by 9.7K HMMs. The system utilizes a trigram language
model with 4.7M n-grams over a lexicon of 65K words. For each of
the word sequence hypotheses in the n-best list, we perform a forced-
alignment of the word using its dictionary pronunciation, to obtain
a sequence of phones, qwn , corresponding to each word hypothesis
sequence, wn.

In parallel, we also perform a less-constrained phone decoding
of the input utterance using a phone-based language model to obtain
a decoded phone sequence, qx corresponding to the utterance. The

system utilizes the same acoustic model as is used to perform the de-
coding and forced-alignment described in the previous step. The lan-
guage model is a trigram model with 16K n-grams over the phone-
set consisting of 45 phones. It was trained on a forced-alignment of
in-domain data.

The phonetic score ϕ(qwn ,qx) between the pair of phone se-
quences is computed according to Equation 10, with a suitable
choice of prior distribution p(s) on the segmentations. The chunk-
pair probabilities, required in the computation are assumed to be
pre-computed as described in Section 4.

Finally, the n-best word hypotheses wn are re-ranked by com-
puting a new score, ψ(wn, x), obtained by linearly interpolating the
baseline LM-AM scores with the logarithm of the phonetic score,

ψ(wn, x) =(1− λ){log p(x|qwn) + γ log p(qwn ,wn)}
+ λ{logϕ(qwn ,qx)} (16)

where 0 ≤ λ ≤ 1 is the interpolation weight and is tuned on devel-
opment set.

5.1. Effect of (Lmax) and segmentation prior (p(s))

The choice of the order, Lmax, of the phonetic score has an im-
pact on the amount of contextual information available to the system
with the caveat that the model size increases as Lmax increases. Al-
though there is a danger of sparsely estimating higher-order chunk
pair distributions, in practice we did not see any negative effect while
increasing Lmax as large as 10; performance improved steadily as
the order of the phonetic score was increased to about 7, where it
plateaued. The experiments in this section use Lmax = 8.

The model presented in Section 3.1 allows for a non-uniform
prior distribution over the possible segmentations. In pilot exper-
iments, we experimented by setting f(si) = eδ to bias the aver-
age segment length. However, system performance was found to be
insensitive to various choices of δ. Consequently, the experiments
presented here use δ = 0, which corresponds to a uniform prior.

5.2. Smoothing over n-best phone decodings

In Section 3, we describe the system as computing a phonetic score
for each word hypothesis with respect to the 1-best decoded phone
sequence, qx. As we have mentioned previously, the 1-best decoded
phone sequence represents an approximation of the true phonetic
sequence uttered by the speaker. Errors in the phonetic decoding

4731



Input Utterance

�

�

Word Decoding �{qwn}

�{log p(x|qwn) + γ log p(qwn ,wn)}

Phone Decoding �qx

Chunk based
phonetic score

�ϕ(qwn ,qx)
N-Best Rescoring

Fig. 2. Architecture of proposed system. The chunk based phonetic score augments the acoustic and language model scores output from the
baseline word decoder.

System
Development Set Test Set

WER (%) SER (%) WER (%) SER (%)

Baseline 33.0 33.5 33.8 34.8

unsmoothed 31.5 32.9 32.6 34.4†

smoothed 31.1 32.5 32.3 34.0

Table 1. Performance obtained by rescoring 100-best word hypothe-
ses from the baseline system using either the phonetic score com-
puted using the 1-best phone decodings as defined in Equation 10
(unsmoothed) or the smoothed phonetic score averaged over the 10-
best phone decodings as defined in Equation 17. The experiment
marked with a † represents a significant (p ≤ 0.05) improvement
over the corresponding baseline, all other improvements are signifi-
cant with p ≤ 0.01.

will result in poor approximations to the true phonetic sequence, and
potentially a poor estimate for the phonetic score. In such situations,
the n-best decoded phone sequences, qx1 ,qx2 , · · · ,qxn may more
accurately reflect the uncertainty in the surface phonetic sequence.
We therefore consider the use of a smoothed phonetic score, obtained
by averaging the phonetic score from Equation 10 over the n-best
decoded phone sequences,

ϕ(n)(qw,qx1 , · · · ,qxn) =
1

n

n∑
i=1

ϕ(qw,qxi). (17)

Once the smoothed phonetic score has been computed, it can be in-
terpolated with the baseline AM-LM scores as before.

5.3. Results

Based on the results obtained in pilot experiments, we evaluated both
smoothed and unsmoothed versions of the phonetic score obtained
by rescoring the 100-best word lists from the baseline using either
the 10- or 1-best phonetic decodings respectively. In Table 1 we
present the results obtained on both the development and test sets. As
can be seen from the table, systems employing either the smoothed
or unsmoothed phonetic scores result in significant improvements
(measured using a binomial sign test) over the corresponding base-
lines. The use of the smoothed phonetic score results in significant
performance improvements in terms of word error rate (WER) over
the baseline (p ≤ 0.01); it also significantly outperforms the sys-
tem employing the unsmoothed phonetic score (p ≤ 0.025). The
smoothed phonetic score also significantly outperforms the baseline
in terms of sentence error rate (SER) on both the development as
well as test set (p ≤ 0.01). Overall, the best performing system
achieves a relative WER reduction of 4.4% over the baseline and a
relative SER reduction of 2.3% on the test set.

6. CONCLUSIONS

We presented a chunk-based phonetic score based on a novel tech-
nique for computing corresponding chunks between the phonetic de-
coding and the forced-alignment of the word hypothesis. The pro-
posed framework is conceptually simple, and easy to incorporate
within an n-best rescoring framework. The proposed phonetic score
implicitly captures pronunciation variation, while simultaneously in-
corporating long-range context through higher-order chunks. In ex-
perimental results, the proposed system resulted in a 4.4% relative
WER reduction and a 2.3% relative SER reduction on Windows live
search for mobile task [1].
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