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ABSTRACT

Parameter tying is a crucial scheme for robust context dependent

acoustic modeling since it takes a major role in balancing the desired

model complexity and the amount of data available. In this paper, a

modified decision tree state clustering scheme based on tied-mixture

Gaussian Mixture Model (GMM) is proposed. Instead of using a

single Gaussian untied triphone system, a tied-mixture GMM tri-

phone system is adopted as a better acoustic model for state cluster-

ing. Meanwhile, the proposed scheme allows easy incorporation of

discriminative training during clustering. Experimental results show

that for a varying number of state clusters, the proposed approach

consistently outperforms the standard single Gaussian based state

tying. The best WER performance has a 10.5% relative improve-

ment over the conventional decision tree clustering and the proposed

scheme achieves its best performance using a much smaller number

of state clusters. Moreover, detailed analyses reveal that the pro-

posed GMM clustering has a better state distribution which leads to

1) better frame-state alignments 2) better phonetic question selec-

tions. These two factors may make the proposed approach superior

for clustering.

Index Terms— Tied-mixture, phonetic decision tree, state clus-

tering, context dependent modeling

1. INTRODUCTION

Context dependent (CD) acoustic models are widely used in state-

of-the-art automatic speech recognition systems to address the co-

articulation phenomenon in continuous speech. However, the num-

ber of CD phonemes grows exponentially with the extent of the con-

texts. Each phone state is conventionally modeled by GMMs. There-

fore, the total number of Gaussian parameters can be of the order of a

few hundreds of thousands. Modeling all these triphones as distinct

models requires a large amount of training data. Hence, a major

challenge of CD modeling is how to obtain a reliable estimation for

all possible triphones with limited amount of training data.

Parameter tying is a crucial scheme for robust CD modeling

since it takes a major role in balancing the desired model complexity

and the amount of data available. Phonetic decision tree cluster-

ing [1] is a data-driven approach to cluster all the triphone states cor-

responding to one base phone state. One of the major advantages is

that unseen triphones can be easily synthesized. Eigentriphone [2] is

proposed to extract an eigenbasis over all the “rich” triphones based

on the Gaussian means. Each triphone is viewed as a point in the

eigenbasis and ends up with a distinct set of parameters. However,

one disadvantage of this method is that it cannot handle the unseen

triphones. Yet another parameter sharing scheme is called subspace

modeling, e.g., canonical state modeling [3], subspace GMMs [4].

Decision tree clustering can also be viewed as a model selection

problem. Therefore, many Bayesian solutions [5, 6] are also investi-

gated. Genone [7] is a data-driven GMM based mixture component
level clustering scheme. The system is built by progressively unty-

ing the mixtures of a tied-mixture GMMs following an agglomera-

tive clustering, splitting and re-estimation procedure. However, the

method still cannot address the unseen triphones directly.

In this paper, we investigate a modified decision tree state clus-

tering scheme based on tied-mixture GMMs. Single Gaussian untied

triphone system is used in [1] due to the performance consideration,

since the calculation of GMMs likelihood gain requires revisiting the

whole training data which is intractable. In principle, better align-

ments can be obtained using GMMs. However, training an untied

GMMs triphone system would lead to poorer alignments. There-

fore, context independent (CI) GMMs are used to initialize all the

triphones in the proposed approach. Meanwhile, instead of using

a single Gaussian model or untied triphone GMMs, a tied-mixture

GMM triphone system is adopted to perform the state clustering. By

resorting to an auxiliary function, we avoid revisiting the training

data during clustering and the same sufficient statistics as the stan-

dard approach can be used for GMM clustering. Moreover, discrim-

inative training can be incorporated during clustering by training the

CI GMMs with the discriminative criteria [8]. Since the new clus-

tering scheme is still within the decision tree clustering framework,

it can handle the unseen triphones easily. The proposed GMM clus-

tering scheme has a better state distribution which leads to 1) better

frame-state alignments 2) better question selections, and these two

factors may benefit the state clustering procedure.

The paper is organized as follows. The derivation of the tied-

mixture GMM based decision tree state clustering is given in Section

2. Section 3 gives the recipe of how to build a tied-state CD system

using the proposed state clustering scheme. Experimental evalua-

tions are presented in Section 4. Detailed analyses and discussions

of the proposed clustering scheme are given in Section 5. Section 6

summarizes the findings of the work and concludes the paper.

2. TIED-MIXTURE GMM BASED STATE CLUSTERING

Let S be a cluster of triphone states corresponding to one base phone

state. These triphone states are modeled as a mixture of Gaussians

instead of a single Gaussian in [1]. Moreover, the set of Gaussians

are shared among S. In other words, all the triphone states in S share

the same Gaussian means μ(m), variances Σ(m) as the base phone

and cluster weights cSm. The log likelihood of S is expressed as:

L(S) =
T∑

t=1

∑

s∈S

γs(t) log(
M∑

m

cSmN (ot;μ(m),Σ(m)))
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where ot denotes the training frame t, s ∈ S denotes an individual

triphone state in cluster S, M is the number of Gaussian compo-

nents, γs(t) is the expected occupancy of state s at time t, and cSm
is the m-th component weight for the whole cluster calculated from

individual weights of all the triphone states in S. Subsequently, we

refer to cSm as hyper weight.
To compute this GMM likelihood term efficiently without revis-

iting the training data, an auxiliary function is used to serve as the

lower bound L(S) ≥ Q(S):

Q(S) =

T∑

t=1

∑

s∈S

M∑

m

γsm(t) log(cSmN (ot;μ(m),Σ(m)))

γsm(t) = γs(t) ∗ csm
where γsm(t) is the expected occupancy of frame ot residing in mix-

ture m of triphone state s and csm is the mixture weight of triphone

state s for the m-th shared component. We thus have the factorized

auxiliary function as:

Q(S) =

M∑

m

log(cSm)
∑

s∈S

βs ∗ csm +KS

where

βs =
T∑

t=1

γs(t)

KS =
T∑

t=1

∑

s∈S

M∑

m

γs(t) ∗ csm logN (ot;μ(m),Σ(m))

Note the evaluation of KS still needs revisiting the training data.

However, since tied-mixture is used, KS stays the same before and

after a split. Let S1 and S2 be the two new clusters after splitting S,

the equation

KS = KS1 +KS2 (1)

holds. Thus KS does not contribute to the change in likelihood.

In other words, the likelihood change only depends on the weight

terms, cSm and csm. In this way, we avoid evaluating KS thus re-

visiting the training data during decision tree building. βs is the

expected occupancy of triphone state s computed on all the training

data and can be obtained from the Baum-Welch estimation. This

is also the same sufficient statistics used for standard decision tree

clustering [1]. The hyper weight cSm can be computed as:

cSm =

∑
s∈S

∑T
t=1 γsm(t)

∑
s∈S

∑M
m

∑T
t=1 γsm(t)

=

∑
s∈S csmβs∑

s∈S βs

With these sufficient statistics, the auxiliary function can be refor-

mulated as:

Q(S) =
M∑

m

cSm ∗ log(cSm)
∑

s∈S

βs +KS

The change of Q values after a split can be expressed as:

ΔQ(S) = Q(S1) +Q(S2)−Q(S)

Note that since equation 1 holds, ΔQ(S) depends only on the hyper
weight cSm. Therefore, for each node splitting, the question which

leads to the maximal ΔQ(S) is chosen and used to split S. The pro-

cedure is repeated until the maximal ΔQ(S) falls below a threshold.

3. SYSTEM BUILDING RECIPE

The procedure of building a tied-mixture GMM based CD tied-state

system is basically the same as [1]. The only difference is that the

model before the clustering is a well trained CD tied-mixture GMM

system. The following procedure is performed for each base phone

state qj over its corresponding triphone states.

Step 1: Monophone GMM/HMM system is firstly built. The likeli-

hood of a base phone state qj is denoted as:

Lqj (ot) =
M∑

m=1

cjmN (ot;μjm,Σjm)

Step 2: The monophone GMM/HMM of base phone state qj is

cloned to initialize all its corresponding triphone states.

Step 3: Re-estimate only the weights of the tied-mixture system

while keeping Gaussian means and variances fixed as qj . The

likelihood of a triphone state qsj thus can be expressed as:

Lqsj
(ot) =

M∑

m=1

csjmN (ot;μjm,Σjm)

where csjm is the m-th shared component weight of triphone

state qsj .

Step 4: Perform GMM tied-mixture based decision tree clustering

using the re-estimated tied-mixture GMMs for each base

phone state and the unseen triphone states are synthesized

using the corresponding decision tree.

Step 5: For each physical state S, untie all the mixture components

of the clustered model so that each physical state has its own

Gaussian means, variances and weights. These cluster spe-

cific parameters are then retrained.

4. EXPERIMENTS

4.1. Experimental Setup

This section presents the experimental results comparing the tied-

mixture GMM based and the baseline conventional single Gaussian

based decision tree state clustering using the WSJCAM0 [9] corpus.

There are 18.3 hours of training data, comprising 9889 utterances.

Testing set “si dt5a” which consists of 0.73 hours of speech for the

5K WSJ0 task is used for performance evaluation. The phone set

has 41 monophones including one silence model and one short pause

model. Each triphone is modeled as a left-to-right 3-state HMM and

each state has a Gaussian density of M = 16. The features are the

standard 39-dimensional MFCCs consisting of 13 static coefficients

(12 MFCC plus one C0 energy term) and the first and second deriva-

tives. HTK1 is adopted for decoding. Word recognition is performed

using a bigram full decoding followed by a trigram rescoring.

4.2. Tied-mixture GMM Based State Clustering

The word recognition performance under the baseline state clus-

tering [1] (Single Gaussian Clustering) and proposed tied-mixture

GMM based state clustering scheme is shown in Figure 1 in terms

of word error rate (WER%). Consistent performance improvement

1Hidden Markov Model Toolkit, http://htk.eng.cam.ac.uk
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Fig. 1. WER comparison of three clustering schemes. Numbers af-
ter GMM denote the Gaussian density of the tied-mixture system for
GMM clustering. All clustering schemes are evaluated using their
resulting tied-state triphone models with 16 components per state.

is obtained with various number of state clusters using both tied-

mixture GMM-8 and GMM-16 clustering. The best performance ob-

tained from GMM-16 clustering (6.32%) has a 6.4% relative (0.43%

absolute) improvement over the baseline (6.75%). More interest-

ingly, the best performance of GMM-16 clustering uses only 2765

clusters, whereas for the baseline, 4530 clusters are needed. This

illustrates an advantage of the proposed clustering scheme: a much

better performance can be obtained with a much smaller parame-

ter size. The notable performance declines after 4530 may be be-

cause there is not enough training data for a reliable estimation of

this many clusters.

4.3. Incorporation of Discriminative Training

We further investigate whether the incorporation of discriminative

training would further boost the clustering performance of the pro-

posed tied-mixture GMM-16 clustering. One way of achieving this

is training the CI GMMs in step 1 (see section 3) using discrimi-

native training criteria, e.g., MMI, MPE [8]. Note only CI GMMs

are discriminatively trained. After clustering, the resulting tied-state

triphone system is trained with maximum likelihood (ML) and then

used for decoding. Compared to the GMM-16 clustering initialized

with ML trained CI GMM-16, a further performance boost (6.04 vs.

6.32) is obtained with an even smaller number of state clusters (1685

vs. 2765) using MMI criterion. This also translates to a 10.5% rela-

tive improvement over the baseline single Gaussian based clustering.

Significance test using SCTK2 reveals that the improvement over the

baseline clustering is significant with p = 0.029. Therefore, GMM

based state clustering retains its clustering performance even with

the incorporation of discriminative training. Recall all the triphone

states given a base phone state share the same set of Gaussians. The

further reduction of cluster number may be because the discrimina-

tion among all the triphone states initialized by the discriminatively

trained GMM-16 CI models before clustering is better modeled, thus

less clusters are needed to distinguish them.

2NIST Speech Recognition Scoring Toolkit,
http://www.itl.nist.gov/iad/mig//tools

Table 1. WER performance comparison of two baseline systems

#state clusters 1685 2765 3560 4530 5440

baseline 7.02 6.97 6.84 6.75 7.47

+re-estimation 6.75 6.68 6.59 6.96 7.64

GMM-16 clustering 6.59 6.32 6.54 6.78 7.04

5. ANALYSES AND DISCUSSIONS

Given the performance gain of the proposed tied-mixture GMM-16

clustering scheme, we further investigate two possible factors which

make GMM based clustering superior.

5.1. Alignment of Training Data and Base Unit Modeling

Decision tree based state clustering has an assumption that the initial

frame-state alignments do not change during the tree building proce-

dure. Otherwise, a re-alignment using all the training data would be

required for each possible partition which is intractable. However, a

single Gaussian may provide poor alignments for clustering since it

is inadequate to represent the variability in the data. On the other

hand, better alignments may be obtained by tied-mixture GMMs

in the proposed approach. To verify this, the same tied-mixture

triphone GMM-16 after step 3 is used as the alignment model to

perform a two-model re-estimation [10] on the single Gaussian un-

tied triphone system before state clustering. Thus, both clustering

schemes now have the same alignment model to generate the frame-

state alignments. After the re-estimation, the conventional decision

tree based clustering procedure is performed to get the tied-state tri-

phone system for decoding. The WER performance is given in Ta-

ble 1. As expected, a small performance boost (6.59 vs. 6.75) is

observed after the re-estimation. However, the performance of the

baseline clustering and the one after re-estimation is very close al-

though there are some performance declines which are also reported

in [11]. Therefore, the fact that the proposed approach outperforms

the baseline system may be due to that GMM is used so that the vari-

ability in the data can be better modeled. This benefits the following

clustering procedure in the sense that the separability among the tri-

phone states before clustering is enlarged, which makes them easy

to distinguish. However, the performance of the baseline clustering

after re-estimation is still worse than the proposed approach. There-

fore, other factors may exist that the proposed scheme can further

benefit from.

5.2. Investigation of Phonetic Questions

We further study the phonetic questions used by the two systems

during decision tree building since the questions determine the state

partitions and eventually the state clusters. The results given here

are based on the configuration that both schemes lead to 4530 state

clusters. 7089 questions are used by the tied-mixture GMM-16

clustering scheme, which is 1205 more than the baseline clustering.

This means more partitions are considered, which results in a larger

search space and may lead to a better clustering eventually. Figure 2

shows the count of the top 10 most important questions used by

each system. The count for each question is calculated as: 1) for

each decision tree, all the questions used are sorted according to

the likelihood gain in descending order and the top 10 questions are

considered most important for this decision tree 2) if one question

appears in the top 10 most important questions of any of the 117

decision trees, its count is increased by one. After counting, the

4719



Fig. 2. Question counts under two clustering schemes based on their
importance.

questions of the GMM based clustering are sorted based on their

count in descending order and then indexed. According to the ques-

tion indices, the corresponding question count of the single Gaussian

based state clustering is drawn. This procedure is done on questions

concerning left contexts (left subfigure) and right contexts (right

subfigure) respectively.

Many spikes of the baseline clustering curve are observed for

both left and right context question figures. This means that the two

systems perform quite differently on question selections and node

partitions during the decision tree building procedure. Moreover,

there are more outstanding spikes on the left context questions than

the right contexts. This may imply that the single Gaussian based

clustering puts more emphasis on the left context. We further ex-

amine these 1170 (117 × 10) questions to verify this hypothesis. It

turns out, for the baseline clustering, there are 618 questions con-

cerning the left contexts and 496 about the right contexts. While for

the proposed scheme, 564 left contexts and 563 right contexts are

used, which is much more balanced than the baseline. The reason

why these numbers do not sum to 1170 is for some decision trees,

the total number of questions used is smaller than 10. The imbal-

ance of left and right context questions for the single Gaussian based

clustering will probably lead to many biased partitions which may

hurt the performance.

Moreover, further examination of these questions reveals an-

other interesting fact: the single Gaussian based state clustering

tends to choose more specific questions. We define “specific ques-
tions” as: 1) L/R Silence 2) L/R Nasal 3) L/R phone (e.g., L ae,

R iy). The total number of specific questions for the baseline is 328

while only 276 for the proposed clustering. In general, more specific

questions tend to give more state clusters thus may require more

training data for a robust estimation. This insight also explains why

the proposed clustering scheme can achieve its best performance

with a smaller number of clusters than the baseline system.

6. CONCLUSIONS

In this paper, we have investigated a tied-mixture GMM based state

clustering scheme as an alternative to the conventional single Gaus-

sian based decision tree state clustering scheme. Decision tree clus-

tering is performed on a tied-mixture GMM system, instead of a sin-

gle Gaussian system used in the conventional approach. Experimen-

tal results show that for a varying number of state clusters, the pro-

posed approach consistently outperforms the standard single Gaus-

sian based clustering. The best WER performance of the proposed

approach has a 10.5% relative improvement over the conventional

approach. In addition, the proposed scheme achieves its best perfor-

mance using a much smaller number of clusters. Detailed analyses

reveal that the proposed GMM clustering has a better state distribu-

tion which leads to 1) better frame-state alignments 2) better pho-

netic question selections. These two factors may contribute to the

performance improvement over the conventional decision tree clus-

tering scheme. Future work includes the investigation of discrimina-

tive splitting criteria using the tied-mixture GMM based state clus-

tering scheme. Applying the proposed clustering scheme to larger

tasks and databases, e.g., spontaneous speech, is also necessary to

see whether the clustering performance can be retained.
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