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ABSTRACT

The estimation of an accurate noise model is a crucial problem
for model-based noise suppression including a vector Taylor series
(VTS)-based approach. The variation of the speaker characteristics
is also a crucial factor as regards the model-based noise suppression.
As a result, a speaker adaptation technique plays an important role
in the model-based noise suppression. To deal with former problem,
we have already proposed an unsupervised estimation method for
a noise mixture model. Therefore, this paper proposes a joint pro-
cessing method that simultaneously achieves speaker adaptation and
noise mixture model estimation. This joint processing is realized
by using minimum mean squared error (MMSE) estimates of clean
speech and noise. Although VTS-based approach involves non-
linear transformation, the MMSE estimates make it possible to flexi-
bly estimate accurate parameters for the joint processing without the
influences of non-linear VTS transformation. In the evaluation, the
proposed method provided an improvement compared with results
obtained using only noise mixture model estimation.

Index Terms— noise suppression, noise mixture model, speaker
adaptation, MMSE estimation

1. INTRODUCTION
Noise robustness is a crucial problem as regards the practical use
of automatic speech recognition (ASR). To ensure noise robustness
for ASR, various noise robust techniques have been proposed. As
the front-end processing of ASR, robust feature extraction [1] and
noise suppression [2]-[6] reduce the influence of interfering noise
from observed noisy speech signals. On the other hand, back-end
processing including model compensation [7, 8] and model adapta-
tion [9, 10, 11] provide acoustic models that accurately represent the
acoustic features of the corrupted speech signals.

In recent progress in the research field, statistical model-based
front-end processing has been widely used and its effectiveness is
well known. Representative techniques include the minimum mean
squared error (MMSE)-based approach [3] and the vector Taylor se-
ries (VTS)-based approach [4]. Especially, the VTS-based approach
has attracted attention as a powerful tool for noise robust ASR.

The VTS-based approach compensates models of observed
noisy speech with models of clean speech and noise based on a
non-linear mismatch function [4]. The variation of the speaker
characteristics and the noise conditions are adjusted by using an
EM algorithm-based parameter update with a linear approximation
based on the Taylor series expansion. An accurate update of the
parameter, especially an estimation of the noise model parameters,
is a crucial factor in the VTS-based approach.

As mentioned in our previous work [6], although the typical
VTS-based approach employs a single Gaussian distribution, a noise
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model with a single Gaussian distribution is unsuitable for a non-
stationary noise that has a multi-peak distribution. If the noise has
a multi-peak distribution, a mixture model, e.g., a Gaussian mix-
ture model (GMM), should be used for the noise model. However,
the estimation of hidden variables, namely noise mixture compo-
nents, is computationally intractable in the conventional VTS-based
approaches. For this problem, we have proposed an unsupervised es-
timation method for the noise mixture model by utilizing the MMSE
estimates of noise signals [6], and showed a significant improvement
in ASR accuracy in highly non-stationary noise environments.

With model-based noise suppression, although a speaker inde-
pendent (SI) model is typically used for the clean speech model, the
use of a speaker dependent (SD) model is a reasonable way to im-
prove the noise suppression. The accuracy of a clean speech model
seriously affects the estimation accuracy of the noise model and the
other parameters. Thus, speaker adaptation of the SI clean speech
model becomes an important factor for the VTS-based approach.
However, speaker adaptation is also an intractable problem in the
VTS-based approach, because the observed data is restricted to noisy
speech signals when we utilize the VTS-based approach. Namely,
we cannot use sufficient data for the speaker adaptation due to the
unobservability of the clean speech signal. As a solution to this prob-
lem, Chin et al., used pre-trained speaker adaptation parameter sets,
and found an appropriate parameter based on the EM algorithm [8].
However, this method cannot fully represent the characteristics of
the target speaker in the adapted model, because this method merely
selects the adaptation parameters of a similar speaker. To overcome
this problem, we utilize the MMSE estimates of clean speech signal
for the speaker adaptation. The MMSE estimates of clean speech
signals are obtained by using the approach described in [6].

With the proposed method, since only given utterance is avail-
able for the speaker adaptation, the amount of adaptation data be-
comes small. Thus, we adapted the parameters of the SI clean speech
model based on the bias-based adaptation [10], i.e., —SD = —SI +b,
where —SD , —SI , and b denote the mean vectors of the SD and the
SI clean speech model, and the bias vector, respectively1. With this
method, we assume that the bias vector b is a common parameter for
all the Gaussian components included in the SI clean speech model.

Based on the above considerations, we propose a joint process-
ing method that simultaneously achieves speaker adaptation and the
previously proposed noise mixture model estimation by utilizing
MMSE estimates of the clean speech and noise. The evaluation re-
sults prove that the proposed method provides further improvements
in ASR accuracy in highly non-stationary noise environments.

2. MODEL COMPENSATION BASED ON VTS
The VTS-based approach compensates the SI clean speech model
for differences in speaker characteristics and noise conditions by us-

1This processing involves the adaptation of channel difference.
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ing a non-linear mismatch function [4]. In this paper, we utilize an
SI clean speech model with two internal states, i.e., states of silence
(speech absent) and speech (speech activity). Each state is modeled
in advance by a GMM with K Gaussians in the M -dimensional log-
arithm output energy of the Mel-filter bank (LMFB) domain.

2.1. Formulation of VTS
In the LMFB domain, the mismatch function between the mean vec-
tors of observed signals —O and —SI is derived as follows:

—O,j,k = —SI,j,k + b + log
`
1 + exp

`
—N − —SI,j,k − b

´´

= h
`
—SI,j,k, b, —N

´
,

(1)

where —N , j, and k denote mean vector of the noise and the indices
of the state and the Gaussian component, respectively. The oper-
ations log(·) and exp(·) are independently applied to each vector
element, and 1 = {1, · · · , 1}T .

Based on Eq. (1), typical VTS compensates for the difference
between the initial parameters and the target parameters by using the
first order Taylor series-based linear approximation as follows:

wO,j,k = wSI,j,k (2)

—O,j,k � h
`
—SI,j,k, b̄, —̄N

´
+ (I − Hj,k)

`
b − b̄

´
+ Hj,k (—N − —̄N )

(3)

ΣO,j,k � (I − Hj,k)ΣSI,j,k (I − Hj,k)T + Hj,kΣN HT
j,k

= g (ΣSI,j,k,ΣN , Hj,k) ,

(4)

with the Jacobian matrix Hj,k = diag
˘
∂h

`
—SI,j,k, b̄, —̄N

´
/∂—̄N

¯
,

where wO,j,k, ΣO,j,k, wSI,j,k, and ΣSI,j,k denote the Gaussian
weights and the diagonal variance matrices of the compensated and
SI clean speech models, respectively. —N , ΣN , and I denote the
mean vector and variance matrix of the target noise model and the
unit matrix, respectively. The initial mean vector of the noise model
is derived as —̄N = 1

U

PU−1
t=0 Ot, where Ot denotes the vector of

the observed noisy speech signal in the LMFB domain at the t-th
frame. The initial bias vector is set to b̄ = 0.

Based on the EM-algorithm, the bias vector b and the parame-
ter set of the noise model –N = {—N ,ΣN} are optimized as the
parameters that maximize the following cost function QO(·):
n

b̂, –̂N

o
= arg max

b,–N

QO

“
O0:T−1, –O|b(i), –

(i)
N

”

= arg max
b,–N

QO

“
O0:T−1, VTS (–SI , b, –N ) |b(i), –

(i)
N

”
,

(5)

where the subscript 0 : T − 1 = 0, · · · , T − 1, where T de-
notes the amount of frame. i denotes the iteration index of the
EM-algorithm. –SI =

˘
wSI,j,k, —SI,j,k,ΣSI,j,k

¯
and –O =˘

wO,j,k, —O,j,k,ΣO,j,k

¯
, respectively. The operation VTS(·) is

the VTS transformation given by Eqs. (2) to (4).

2.2. Problem with VTS-based approach
The typical VTS-based approach employs a single Gaussian distri-
bution for the noise model. As mentioned in our previous work [6],
a noise model with a single Gaussian distribution is unsuitable for a
non-stationary noise that has a multi-peak distribution. In the VTS-
based approach, the parameter set –N is estimated with the crite-
rion of Eq. (5). However, this processing is an indirect approach for
estimating –N . Therefore, we should estimate –N by using only
observed signal Ot and the non-linear function of the VTS trans-
formation, because the noise signal cannot be observed directly. In

this case, the estimation of the hidden variables, namely the noise
mixture components, is computationally intractable.

In addition, we cannot obtain a closed form solution of noise
variance matrix ΣN in the conventional VTS scheme due to nonlin-
earity of the mismatch function. Usually, a gradient-based approach
such as Newton’s method is used to estimate ΣN . In other cases,
ΣN is not updated. In this case, we cannot obtain accurate param-
eter estimates even for a noise model with a single Gaussian distri-
bution. Here, the estimation of bias vector b is also computationally
intractable due to the same problem.

3. ESTIMATION OF BIAS VECTOR AND NOISE MODEL

To overcome the problem with the VTS-based approach, the pro-
posed method employs an unsupervised technique for estimating the
bias vector and noise mixture model by using the LMFB vectors of
clean speech St and noise N t given by the MMSE estimators.

The MMSE estimates of St and N t are derived as:

Ŝt = E {St |Ot, –O, –SI , b} (6)

N̂ t = E {N t |Ot, –O, –N } , (7)

where E{·} denotes the MMSE estimator. Then, with the estimated
clean speech Ŝt and noise N̂ t, b and –N are estimated by using
EM-based maximum likelihood (ML) estimation based on the fol-
lowing criteria instead of Eq. (5),

b̂ = arg max
b

QSD

“
Ŝ0:T−1, –SI , b|b(i)

”
(8)

–̂N = arg max
–N

QN

“
N̂0:T−1, –N |–(i)

N

”
, (9)

where QSD(·) and QN (·) denote the cost functions of the SD clean
speech and the noise models, respectively. By iterating these pro-
cesses with the EM algorithm, b and –N are successfully optimized.

3.1. Initialization
The initial parameters of the bias vector and noise mixture model
with L mixture components are given as

b(i=0) = 0 (10)

–
(i=0)
N =

j
w

(i=0)
N,l =

1

L
, —

(i=0)
N,l ∼ N `

—̄N , Σ̄N

´
,Σ

(i=0)
N,l = Σ̄N

ff
,

(11)

where l and wN,l denote Gaussian component index and Gaussian
weight of noise muxture model, respectively. —

(i=0)
N,l is initialized by

multivariate Gaussian random value given by N `
—̄N , Σ̄N

´
, where

Σ̄N = diag
n

1
U

PU−1
t=0 OtOT

t − —̄N —̄T
N

o
.

3.2. E-step
3.2.1. Model compensation
The first stage of E-step is the compensation of an observed signal
model with the estimated parameters of the previous iteration, b(i)

and –
(i)
N . During the model composition, each state of the SI clean

speech model has K Gaussians and the noise model has L Gaus-
sians. Thus, the number of Gaussians contained in each state of the
composed model is expanded to K × L. At the i-th iteration, the
model parameter set –

(i)
O is derived as

–
(i)
O =

8>>>><
>>>>:

w
(i)
O,j,k,l = wSI,j,k · w(i)

N,l ,

—
(i)
O,j,k,l = h

“
—SI,j,k, b(i), —

(i)
N,l

”
,

Σ
(i)
O,j,k,l = g

“
ΣSI,j,k,Σ

(i)
N,l, H

(i)
j,k,l

”

9>>>>=
>>>>;

. (12)
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3.2.2. Expectation of cost function
When O0:T−1 is given, the expectation of the cost function related
to the parameter set –

(i)
O is derived as follows:

QO

“
O0:T−1, –O|–(i)

O

”
=

X
t,j,k,l

P
(i)
t,j P

(i)
t,j,k,l

×
“
log w

(i)
O,j,k,l + logN

“
Ot; —

(i)
O,j,k,l,Σ

(i)
O,j,k,l

””
,

(13)

where N (·), P
(i)
t,j , and P

(i)
t,j,k,l denote the probability density func-

tion of a Gaussian distribution and a posteriori (occupancy) proba-
bilities with respect to j, k, and l, respectively.

3.3. M-step
3.3.1. MMSE estimation of noise signal

The MMSE estimate of N
(i)
t defined by Eq. (7) is derived as

N̂
(i)
t = P

(i)
t,j=1Ot + P

(i)
t,j=2

“
Ot + E

n
G

(i)
t

o”

= Ot + P
(i)
t,j=2

X
k,l

P
(i)
t,j=2,k,l

“
—

(i)
N,l − —O,j=2,k,l

”
,

(14)

where G
(i)
t denotes the Wiener filter for extraction of the noise

MMSE estimate in the LMFB domain. Since the state j = 1 is the
silence (speech absence) state, N

(i)
t is obtained as observed signal

Ot. With the speech activity state, j = 2, N
(i)
t is obtained by

using the MMSE estimation with P
(i)
t,j=2,k,l. This method implicitly

involves the voice activity detection for the noise estimation [5].

3.3.2. Noise mixture model estimation with MMSE estimates
With the MMSE estimate N

(i)
t , –

(i)
N is estimated by using a nested

EM-based ML estimation with the following cost function:

QN

“
N̂

(i)
0:T−1, –

(i+1)
N |–(i′)

N

”

=
X
t,l

P
(i′)
t,l

“
log w

(i′)
N,l + logN

“
N̂

(i)
t ; —

(i′)
N,l ,Σ

(i′)
N,l

””
,

(15)

where i′ and P
(i′)
t,l denote the iteration index of the –

(i+1)
N estimation

and the a posteriori probability with respect to l, respectively. Then,
–

(i+1)
N is estimated as follows:

–
(i′+1)
N =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

w
(i′+1)
N,l =

P
t P

(i′)
t,lP

t,l P
(i′)
t,l

,

—
(i′+1)
N,l =

P
t P

(i′)
t,l N̂

(i)
tP

t P
(i′)
t,l

,

Σ
(i′+1)
N,l =

P
t P

(i′)
t,l N̂

(i)
t N̂

(i)T
tP

t P
(i′)
t,l

− —
(i′+1)
N,l —

(i′+1)T
N,l

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

.

(16)

Finally, –
(i+1)
N = –

(i′+1)
N is given by iterating Eqs. (15) and

(16) until convergence.

3.3.3. MMSE estimation of clean speech signal

The MMSE estimate of S
(i)
t defined by Eq. (6) is derived as

Ŝ
(i)
t = Ot + E

n
F

(i)
t

o

= Ot +
X
j,k,l

P
(i)
t,j P

(i)
t,j,k,l

“
—SI,j,k + b(i) − —O,j,k,l

”
,

(17)

where F
(i)
t denotes the Wiener filter for extraction of the speech

MMSE estimate in the LMFB domain.

3.3.4. Bias vector estimation with MMSE estimates
With the MMSE estimate S

(i)
t , b(i) is also estimated by using a

nested EM-based ML estimation with the following cost function:

QSD

“
Ŝ

(i)
0:T−1, –SI , b(i+1)|b(i′′)

”
=

X
t,j,k

P
(i′′)
t,j P

(i′′)
t,j,k

×
“
log wSI,j,k + logN

“
Ŝ

(i)
t ; —SI,j,k + b(i′′),ΣSI,j,k

”” (18)

where i′′ and P
(i′′)
t,j,k denote the iteration index of the b(i+1) estima-

tion and the a posteriori probability with respect to j and k, respec-
tively. Then, b(i+1) is estimated as follows:

b(i′′+1) =

0
@ X

t,j,k

Bt,j,k

1
A

−1 X
t,j,k

Bt,j,k

“
Ŝ

(i)
t − —SI,j,k

”
, (19)

where Bt,j,k = P
(i′′)
t,j P

(i′′)
t,j,kΣ

−1
SI,j,k.

Finally, b(i+1) = b(i′′+1) is given by iterating Eqs. (18) and
(19) until convergence.

3.4. Noise suppression
The noise is suppressed using a Mel-scaled Wiener filter W Mel

t =
exp (F t) as described in our previous work [5]. By applying a third
order spline interpolation, W Mel

t can be transformed into a linear-
scaled filter W Lin

t . The noise suppressed signal ŝτ is obtained by
applying W Lin

t and an inverse fast Fourier transform to the complex
spectrum of the observed signal.

3.5. Processing flow
The following algorithm summarizes the proposed method, and is
applied to each utterance.

Algorithm 1 Parameter estimation and noise suppression

1: Initialize –
(i=0)
N and b(i=0) (See Sec. 3.1.)

2: repeat
3: Model compensation (See Sec. 3.2.1.)
4: Compute expectation of cost function (See Sec. 3.2.2.)

5: Estimate N̂
(i)

t for all t (See Sec. 3.3.1.)
6: Update –

(i)
N with EM-based ML estimation (See Sec. 3.3.2.)

7: Estimate Ŝ
(i)

t for all t (See Sec. 3.3.3.)
8: Update b(i) with EM-based ML estimation (See Sec. 3.3.4.)
9: until convergence is achieved

10: Apply the noise suppression (See Sec. 3.4.)

4. EXPERIMENTS
4.1. Experimental setup
The experimental materials were 100 utterances spoken by 23
Japanese males that were taken from the Information-technology
Promotion Agency (IPA)-98-TestSet. The speaking style of the
speech data is read speech. Three types of highly non-stationary
noises, i.e., airport lobby noise, platform noise, and street noise,
were artificially added to clean speech signals by changing the SNR
at three levels; 10, 5, and 0 dB. The sampling frequency of the
speech data and noises was 16 kHz.

The feature parameters for the noise suppression were 24
LMFBs that were extracted by using a Hamming window with a
20 msec frame length and a 10 msec frame shift length. Each state
of the SI clean speech model had K = 128 Gaussians. The number
of Gaussians of the noise model was set at L = 1, 2, 3, 4. The
training materials for the SI speech model were 33,820 phonetically
balanced sentences spoken by 180 Japanese males. We also trained
SD speech models whose corresponding training materials were 155
sentences per a speaker. The parameter U was set at 10.
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Table 1. ASR results in WER (%). The bias vector update was only applied to the SI clean speech model.
Bias vector Noise model Airport lobby noise Platform noise Street noise

Method update update 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB 10 dB 5 dB 0 dB Avg.

w/o noise suppression — — 26.1 59.1 87.1 27.2 55.1 79.0 11.5 28.7 61.0 48.3
— X 17.0 39.5 72.0 24.0 43.9 70.7 7.3 14.5 29.9 35.4

VTS X X 16.1 34.5 65.8 24.6 43.3 69.8 7.7 13.2 28.2 33.7
SD model X 13.8 34.0 62.8 21.2 43.7 66.2 6.5 11.8 24.9 31.7

— X 17.1 34.2 63.1 23.1 42.4 64.5 8.4 15.6 28.8 33.0
Proposal (L = 1) X X 11.2 28.8 59.9 19.1 39.5 57.8 7.2 11.9 25.0 28.9

SD model X 11.3 25.3 52.7 18.6 35.6 54.8 7.2 12.3 22.7 26.7
— X 13.1 28.8 59.9 20.4 37.5 60.2 6.9 13.2 26.6 29.6

Proposal (L = 2) X X 11.7 27.8 57.0 19.0 35.7 57.6 6.7 11.2 24.0 27.9
SD model X 9.8 23.1 50.0 15.1 28.5 49.8 6.7 10.0 20.2 23.7

— X 13.1 29.8 60.1 17.8 37.1 59.1 7.0 12.4 26.1 29.2
Proposal (L = 3) X X 11.5 27.7 56.8 15.9 32.9 57.6 6.2 11.2 24.0 27.1

SD model X 9.5 22.0 50.1 12.0 27.2 47.7 6.6 9.1 19.3 22.6
— X 12.9 29.7 60.0 17.1 35.4 59.3 7.6 13.3 26.9 29.1

Proposal (L = 4) X X 11.3 27.8 57.3 15.8 33.2 55.6 6.7 10.4 24.1 26.9
SD model X 8.9 21.7 47.7 13.6 25.2 44.3 5.8 9.1 18.3 21.6

The ASR was carried out by employing a weighted finite state
transducer-based decoder [12]. We used SI triphone hidden Markov
models (HMMs) trained by clean speech. The HMM was trained
with a variational Bayesian approach [13]. The HMM topology was
a three state left-to-right HMM and there were 2,364 HMM states.
Each state had 16 Gaussians. The feature parameters for the ASR
consisted of 12 MFCCs and the log energy with their first and second
order derivatives. Cepstral mean normalization was applied to each
utterance. The training materials for the HMMs were the same as
those for the SI speech model used in the noise suppression.

The language model was a back-off tri-gram with Witten-Bell
discounting. It was trained using 75 months’ worth of Japanese
newspaper articles. The vocabulary size was 20k words. The eval-
uation criterion for ASR was the word error rate (WER). The WER
of a clean speech signal was 3.9 %.

4.2. Experimental results
Table 1 shows the ASR results for each method. With the results of
the VTS and the proposed method with only the bias vector update,
the noise model consists of the initial parameters, —̄N and Σ̄N .

In the table, the results of “Proposal (L = 1)” with both bias
vector and noise model updates show significant improvements in
WER compared with the results of “VTS” under the same condition.
In each result, the number of Gaussian distributions for the noise
model is set at L = 1, thus the essential differences between the two
methods are the introduction of an MMSE estimators and the param-
eter estimation criteria. This result proves the effectiveness of the
proposed method, namely the parameter estimation scheme, when
utilizing the MMSE estimates of St and N t. When L exceeds two,
the results of the proposed method with both bias vector and noise
model updates improve further. These results also prove the impor-
tance of considering noise mixture models for non-stationary noise
with a multi-peak distribution. As seen in the table, the optimum
number of Gaussian distributions for a noise model depends on the
noise conditions and SNRs. Thus, a scheme for optimizing the noise
model topology is a crucial factor in the proposed method.

Under all the conditions, the results for the SD clean speech
model are clearly superior to those of a bias vector update with the
SI speech model. Thus, the improvement of the speaker adaptation
scheme is also a crucial factor in the proposed method.

5. CONCLUSIONS

This paper presented a joint unsupervised approach for estimating a
bias vector for speaker adaptation and a noise mixture model with

MMSE estimates of the clean speech and the noise. The evaluation
results show that further improvement was realized by integrating the
speaker adaptation and the estimation of the noise mixture model.
We plan to investigate the improvement of the speaker adaptation
scheme and the selection of an adaptive model topology.
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