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ABSTRACT

In this paper, we propose a method to compensate for noise and
speaker-variability directly in the Log filter-bank (FB) domain, so
that MFCC features are robust to noise and speaker-variations. For
noise-compensation, we use Vector Taylor Series (VTS) approach
in the Log FB domain, and speaker-normalization is also done in
the Log FB domain using Linear Vocal tract length (VTLN) matri-
ces. For VTLN, optimal selection of warp-factor is done in Log
FB domain using canonical GMM model, avoiding the two-pass ap-
proach needed by a HMM model. Further, this can be efficiently
implemented using sufficient statistics obtained from the GMM and
the FB-VTLN-matrices. The warp-factor selection using GMM can
also be done in cepstral domain by applying DCT matrices with-
out the usual approximations associated with conventional linear-
VTLN. The elegance of the proposed approach is that given the
speech data, we obtain directly MFCC features that are robust to
noise and speaker-variations. The proposed approach, show a signif-
icant relative improvement of 31% over baseline on Aurora-4 task.

Index Terms— Speaker Normalization, Noise Compensation,
VTS, TVTLN, Noise and Speaker compensation

1. INTRODUCTION

Automatic speech recognition (ASR) systems are vulnerable to both
Noise and Inter-speaker variations. Several techniques for noise
compensation and speaker normalization have been proposed in
literature and often the efficacy of these methods are studied in
isolation without considering the effect of the other. Recently, there
have been some studies that attempt to compensate both noise and
speaker variability and then investigate their combined effect on
the recognition performance [1][2][3]. However, in most of these
studies, MFCC features are first extracted from noisy speech and
attempts are made to compensate for noise followed by speaker-
normalization. Histogram equalization and Vector Taylor Series
(VTS) are two commonly used techniques for noise-compensation,
while Maximum Likelihood Linear Regression (MLLR) and VTLN
are the commonly used methods used for speaker-normalization. In
order to do speaker-normalization, MLLR/VTLN require an initial
(first-pass) recognition which is used to estimate the normalization
parameters before a final recognition is done, i.e. a two-pass ap-
proach. Recently, linear-VTLN approach has been proposed [4]
which allows VTLN to be implemented as feature-transformation.
However, linear-VTLN warped features are only an approximation
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to conventional-VTLN warped features since the cepstral features
are truncated to usually 13 coefficients which are then used with
Inverse-DCT.
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Fig. 1: Single block structure for Noise and Speaker Compensation

In this paper, we propose a method where noise and speaker-
normalization are done during the feature extraction step, so that
given the noisy speech data we obtain MFCC features that are noise
and speaker compensated as illustrated in Fig. 1. In our proposed ap-
proach we use VTS for noise compensation and VTLN for speaker
normalization with both approaches implemented in the Log FB do-
main. In the paper, our studies show that VTS perform better in Log
FB domain compared to cepstral domain and is discussed in the sec-
tion 4. In Section 2.2 we discuss the advantage of warping in Log
FB domain as compared to the cepstral domain. In this approach,
given Log-FB output of noisy speech, VTS returns a cleaned Log
FB output. VTLN is then done by applying linear-VTLN matrix on
the VTS-cleaned Log FB output to give a VTS-cleaned and VTLN-
warped Log FB. Since the VTLN transformation is a square transfor-
mation, there are no truncation errors unlike linear-VTLN in cepstral
domain. Finally, the two-pass approach for speaker-normalization is
avoided by finding the optimal warp-factor with respect to a canon-
ical Gaussian Mixture Model (GMM) built from VTS-cleaned Log
FB coefficients. Further, the likelihood calculation for the optimal
warp-factor can be efficiently implemented using sufficient statistics
and the FB-warp matrices [5].

The paper is organized as follows. Section 2 briefly reviews
the VTS and TVTLN approaches. In section 3 the proposed ap-
proach is presented. Section 4 has the comparison between the Log
FB compensation and Cepstral domain compensation followed by
experimental results and discussion in section 5. Conclusions are
presented in Section 6

2. VTS AND TVTLN IN BRIEF

2.1. VTS noise compensation

The effect of additive noise on the clean speech in Log FB domain
can be modelled as a non-linear transform by [6],

y = x+ log(1 + e(n−x)) = x+ g(x,n) (1)

where y is the noisy speech, x is the clean speech and n is the
additive noise. In Eqn. (1), g(x,n) is the non-linear function added
due to presence of noise. Different variants of VTS exist depending
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on the order of approximation done for g(x,n). Zero order VTS
(VTS-0) approximates g(x,n) by a constant. VTS-1 is the first order
approximation of g(x,n). The MMSE estimate of clean feature x̂,
is obtained using noisy vector y, noisy speech statistics p(y) and
Taylor series approximated g(x,n). Noisy speech statistics p(y) is
estimated by clean speech using the clean speech GMM p(x) and
noise estimate p(n). The MMSE estimate is given by,

x̂ = y −
∑

k

P (k/y) ∗ log(1 + e(μ̂n−μ̂xk)) (2)

where P [k|y] is the posterior probability of the k-th Gaussian
given the noisy observation, μ̂n is the estimated noise mean and ˆμxk

is the mean of the k-th clean Gaussian. VTS can be applied both in
Log FB domain as well as cepstral domain. In section 4 we study
the implications of VTS in both the domains.

2.2. VTLN for Speaker Normalization

VTLN involves scaling the speech spectra to compensate for vocal
tract length differences. The scaling factor is found in a maximum-
likelihood (ML) framework by [7],

α̂ = argmax
α

p(cα/λ, U) (3)

where cα is warped cepstra, λ is the reference model, U is the tran-
scription (first pass transcription is used in test cases). Reference
model λ is usually a HMM model. However, some research groups
use a set of GMMs for the range of warp factors and an optimal warp
factor is found by scoring unwarped MFCC with these GMMs. This
avoids the 2-pass approach of HMM. Since conventional VTLN is
expensive, recently a linear transformation (LT) approach (TVTLN)
to VTLN, was proposed where warped features are generated by a
LT [4][8], i.e.

cα = Tα ∗ c1.00 (4)

Tα
N×N = D−1

N×M ∗Aα
M×M ∗DM×N (5)

where c1.00 is the unwarped cepstra, cα is α warped cepstra, Tα
N×N

is the VTLN transformation matrix, D−1
N×M is the rectangular In-

verse DCT (IDCT) Matrix, Aα
M×M is the warping matrix, N is the

number of cepstral coefficients and M is the number of Log FB co-
efficients. Usually N < M and in our experiments we use, N = 13
and M = 23. As N < M , the IDCT operation is an approxima-
tion. In [4], cepstral coefficients are shown to be non zero even for
indices greater than 13, resulting in the errors in Log FB coefficients
obtained using the IDCT operation on cepstral coefficients.

2.2.1. TVTLN in Log Filter Bank Domain

In our proposed method warping matrices are directly applied in Log
FB domain avoiding the IDCT approximation errors, as explained in
the Section 2.2 . Since VTS is also applied in the Log FB domain, it
gives an elegant frame work to apply VTLN matrices also in Log FB
domain. Thus the VTLN transformation in Log FB domain is [4]

[A]αk,n =
1

2M

2M−1∑

l=0

e
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(
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)k

e
+j

2π

2M
(
vl
vs

)n

(6)

Fα
vts = Aα ∗ F 1.00

vts (7)

where vαl is the alpha warped frequency and vs is the sampling fre-
quency. Fig. 2 shows the unwarped, 0.8 warped and 1.2 warped
Log FB spectra by applying transformation matrices in the Log FB
domain.
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Fig. 2: Warped Log FB coefficients for α = 1.00, α = 0.80 and
α = 1.20 obtained by applying TVTLN in Log FB domain

3. ROBUST FEATURE GENERATION USING VTS AND
TVTLN IN LOG FB DOMAIN

Feature Extraction : Fig. 1 describes the robust feature generation
which involves 2 steps. First, VTS compensated Log FB features
are obtained. Then, VTLN is performed on VTS-cleaned Log FB
features as explained below:
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Fig. 3: VTS+TVTLN (GMM-FB) feature generation approach.
Warp factor estimation is done using GMM in Log FB domain

• VTS compensation : VTS compensation needs clean speech
GMM as mentioned in section 2.1. GMM for VTS compen-
sation (GMMF ) is built using clean speech Log FB features
(F ). GMMF is built in the training phase. Then, given the
noisy speech signal, VTS compensated Log FB features are
obtained (Fvts) using GMMF as shown in Fig. 3 and Eqn.
(2).

• VTLN Warping : Warping is done in Log FB domain by
multiplying the VTS compensated Log FB coefficients (Fvts)
with warping matrices (A0.8) to get VTS-compensated and
VTLN warped features (Fα

vts). Since the warping matrices
are applied in Log FB domain, IDCT approximation errors
are eliminated. The best VTLN warped feature is estimated
in ML sense according Eqn. (3). The reference model used
for best warp factor estimation is the GMM model built using
VTS-compensated, unwarped features (Fvts). This GMM
model is built iteratively. In the first iteration unwarped
features are used to build GMM1.0

Fvts
. In the subsequent

iterations previous iteration best warp features are used to
build a canonical GMM model. GMM3.0

Fvts
shown in the

Fig. 3 refer to the third iteration GMM model. This process
of building GMM model is done only in the training phase.
Thus best warp features are estimated from 21 warped fea-
tures and GMM3.0

Fvts
to get VTS-compensated, best VTLN

warped Log FB feature. This can be efficiently implemented
using sufficient statistics and warp matrices.

4710



• Finally DCT is applied on VTS-cleaned, best alpha warped
Log FB features to obtain noise compensated and speaker
normalized cepstra.

HMM model is trained using the above VTS compensated, best
VTLN warped features. Testing phase is simplified by using the
above feature generation technique. During test, from the noisy
speech signal, noise compensated and speaker normalized features
are extracted and the recognition is done using the HMM model built
in the training phase. This approach of warp factor estimation in the
Log FB domain is referred to as VTS+TVTLN (GMM-FB). This
approach is more elegant since VTS compensation, VTLN warping
and best warp estimation are all done in Log FB domain itself.

3.1. Warp factor estimation in Cepstral domain using VTS and
TVTLN in the Log FB domain
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Fig. 4: VTS+TVTLN (GMM-CEP) feature generation approach.
Warp factor estimation is done using GMM in cepstral domain.

In this section we investigate the efficacy of warp factor estimation
after the application of DCT. The advantage of performing the warp
factor estimation in cepstral over Log FB domain is that, the cep-
stral features are fairly uncorrelated and can be modelled better us-
ing diagonal covariance GMMs. Warp factor estimation in cepstral
domain is easily done by multiplying the pre-computed warping ma-
trices with DCT matrix as shown in the Fig. 4. Even in this approach
VTS and VTLN warping are done in Log FB domain itself and hence
will not have IDCT approximation errors. Only the warp factor es-
timation is done in the cepstral domain. In this approach warped
cepstra are directly obtained from VTS compensated Log FB fea-
tures by,

cαvts = D ∗ [Aα ∗ F 1.00
vts ] (8)

where cαvts is the VTS compensated, VTLN warped feature. This
method is referred to as VTS+TVTLN (GMM-CEP). Feature gen-
eration steps are same as explained for VTS+TVTLN (GMM-CEP),
except that the best alpha estimation is done directly in the cepstra
domain.

3.1.1. Summary of the proposed approach

Our proposed approach of feature extraction have following merits :
1. It is fast and more convenient. Both noise compensation and

speaker normalization are done in the feature domain.
2. Use of GMM in place of HMM makes VTLN faster and sim-

ple (fast likelihood calculation, 1 pass approach).
3. VTS applied in Log FB domain performs better than VTS in

cepstral domain (Section 4).
4. TVTLN in Log FB domain eliminates the IDCT approxima-

tion errors.
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a) VTSCEP: cepstral LP histogram b) VTSCEP: cepstral HP histogram
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Fig. 5: Histograms of 2nd cepstral coefficient for a) VTSCEP: cep-
stral LP histogram, b) VTSCEP: cepstral HP histogram, c) VTSFB:
cepstral LP histogram, d) VTSFB: cepstral HP histogram

4. VTS IN FILTER BANK DOMAIN VERSUS CEPSTRAL
DOMAIN

VTS can be applied both in cepstral domain (VTSCEP) and Log FB
domain (VTSFB). VTS model for noisy cepstra is given by,

cy = cx +D ∗ log(1 + eD
−1(cn−cx)) (9)

where cy is the noisy cepstra, cx is the clean cepstra, cn is the noise
vector due to additive noise at the input and D is the DCT matrix.
The motivation for the Log FB compensation is that different fre-
quency bands have different SNR levels which makes compensation
of individual filter bank energies more appropriate. In this section,
we examine the noise compensating capabilities of VTS in Log FB
domain and cepstral domain by analysing the histogram plots for
cepstral coefficients obtained from both the approaches. The ba-
sic idea of this analysis, is that for any good ”noise compensating”
method, histogram of ”cleaned” features should match those of the
original speech features. In [9], we show the importance of his-
togram matching of LP and HP cepstra, wherein a significant im-
provement in the recognition accuracy was obtained by equalizing
the LP and HP histograms.

Here, noise compensated cepstral features are obtained for
VTSFB and VTSCEP approaches. The histogram plots, as shown
in Fig. 5 are obtained for low pass (LP) filtered and high pass (HP)
filtered cepstral coefficients at different SNR levels. Filtering is
done in cepstral domain for each frame by a simple averaging and
differencing operation. More detailed explanation is present in [9].

clp(n) = [c(n) + c(n− 1)]/2 n = 1, 2, ..12 (10)

chp(n) = [c(n) − c(n− 1)]/2 n = 1, 2, ..12 (11)

where c(n) is the nth cepstral coefficient of a particular frame, clp
is LP filtered and chp is HP filtered part of c(n). Here we compare
the LP and HP cepstral histograms for VTSFB and VTSCEP ap-
proaches. For VTSCEP, there is a considerable mismatch between
the clean histogram and noisy histogram for both LP and HP cepstral
coefficients. However, for VTSFB the means of the histogram are
well compensated even for SNR-5dB. Thus VTSFB features seem to

4711



Table 1: Recognition Results on Aurora 4 database
Test Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Avg R.I%

Baseline 87.61 75.42 53.30 53.17 46.95 56.57 45.4 76.89 64.21 45.28 41.98 36.26 47.51 36.45 54.9 0

VTS 88.21 83.28 68.86 62.62 62.34 67.35 62.79 82.65 77.28 62.32 55.39 55.28 61.83 59.16 67.81 23.5

VTS+TVTLN (HMM) 90.57 86.42 73.08 67.83 66.39 72.43 68.78 86.31 81.82 68.56 60.21 61.57 66.86 63.85 72.48 32.02

VTS+TVTLN (GMM-FB) 89.74 85.3 72.67 66.36 63.96 71.68 65.72 84.74 79.58 65.37 58.08 56.9 64.26 61.07 70.39 28.22

VTS+TVTLN (GMM-CEP) 90.64 86.19 73.32 67.36 65.83 72.71 67.01 85.80 81.09 69.06 58.38 59.41 66.65 63.48 71.92 31

Table 2: Recognition Results averaged over set A, set B and set C
for Aurora 2 database
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clean 99.31 99.20 99.25 99.29 99.26 99.27

20 dB 97.92 96.38 98.26 98.56 98.23 98.47

15 dB 94.59 94.53 96.85 97.19 96.74 97.03

10 dB 83.06 90.74 92.84 93.35 92.56 92.97

5 dB 54.34 77.60 81.55 81.94 80.95 81.09

0 dB 25.13 49.26 54.13 53.75 53.35 53.31

-5 dB 12.91 20.32 22.89 21.74 22.75 22.78

Avg SNR > 5dB 93.72 95.25 96.8 97.1 96.7 96.95

Overall Avg 71.01 81.70 84.73 84.96 84.37 84.57

be better compensated compared to VTSCEP, which is also reflected
in the recognition results shown in table 2 for Aurora-2 databases.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The proposed method is tested on AURORA-2 and AURORA-4
databases. Feature generation, training and testing procedures are
as explained in the section 3. In AURORA2 connected digits task,
each digit is modelled as a left to right continuous density HMM
with 16 states and 6 Gaussians per state. 13 dimensional MFCC
feature is used as the basic parametrization of the speech signal
using C0 instead of the logarithmic energy. First and second order
regressions are augmented to 13 MFCC vectors, yielding a final
39 component feature vector. CMS is performed by sentence-by-
sentence subtraction of the mean values of each cepstral coefficient.
For Aurora-4, recognition system is based on continuous cross-word
triphone models with 3 tied states and a mixture of 6 Gaussians per
state. The language model is the standard bi-gram for the WSJ0
task. GMM for VTS compensation is obtained from clean speech
Log FB coefficients. GMM for warp factor estimation is obtained
from clean speech Log FB coefficients after applying VTS. In all our
experiments VTS with zero order approximation (VTS-0) is used.
Although VTS-0 performs inferior to VTS-1, it is computationally
efficient.

5.2. Discussion

Tables 1 and 2 show the results for the Aurora-4 and Aurora-2
databases. VTSFB refers to the VTS applied in the Log FB and
VTSCEP for VTS in the cepstral domain. In rest of experiments
only VTS imply VTSFB. VTS+TVTLN (HMM) is combination
of VTS and TVTLN with the warp factor estimation is done using
traditional 2 pass HMM approach. In VTS+TVTLN (GMM-FB)
warp factors are estimated in Log FB domain itself. VTS+TVTLN

(GMM-CEP) does the warp factor estimation in the cepstral domain.
Recognition results show a very small degradation in performance
due to use of GMM in place of HMM for warp factor estimation,
while gaining significantly in terms of computational efficiency. Per-
formance of VTS+TVTLN(GMM-FB) is slightly inferior compared
to HMM and GMM-CEP approach, due to the higher correlation in
the Log FB features. Note that GMM-FB and GMM are very similar
in implementation, with the only difference being the estimation of
warp factor before or after DCT. Results show a significant improve-
ment in recognition accuracy for all 3 approaches (HMM, GMM-FB
and GMM-CEP) for Aurora-4 database. For Aurora-2 database,
VTS+TVTLN (HMM) and VTS+TVTLN (GMM-CEP) perform
well for SNR > 5dB.

6. CONCLUSIONS

In the proposed approach, both noise and speaker compensation are
done in the Log FB domain. The advantage of this approach is that,
noise and speaker robust MFCC features are derived from noisy
speech signal directly during the feature extraction. VTLN warp
factor estimation is made computationally efficient by using GMM
based warp factor estimation and sufficient statistics base likelihood
calculation. GMM-CEP based VTS+TVTLN approach is compu-
tationally efficient and shows a relative improvement of 12.8% and
4.7% in WER over VTS alone for Aurora-2 and Aurora-4 databases
respectively, making it well suited for real time applications.
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