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ABSTRACT

In this paper we investigate stereo-based stochastic mapping (SSM)
with context for the noise robustness of automatic speech recogni-
tion, especially under unseen conditions. Probabilistic PCA (PPCA)
is used in the SSM framework to reduce the high dimensionality of
the noisy speech features with context and derive an eigen repre-
sentation in the noisy feature space for the prediction of clean fea-
tures. To reduce the computational cost in training, an approxima-
tion by single-pass re-training is considered for the estimation of
joint GMM. We also show that the SSM estimate under the mini-
mum mean square error (MMSE) in a space where low dimensional
representation of clean speech and uncorrelated additive noise can
be assumed is related to the subspace speech enhancement. Experi-
ments on large vocabulary continuous speech recognition tasks ob-
serve gains from the proposed approach under the conditions with
seen, unseen and real noise.

Index Terms— stereo-based stochastic mapping, probabilistic
PCA, noise robustness, LVCSR, subspace speech enhancement

1. INTRODUCTION

Stereo-based stochastic mapping (SSM) [1] is one of the noise com-
pensation approaches for automatic speech recognition (ASR). It be-
longs to a family of stereo-based algorithms relying on the stereo
data to learn the statistical relationship between the observed chan-
nel and target channel. Such algorithms find wide applications in
various areas such as noise robust ASR [1][2][3], audio bandwidth
extension [4] and voice conversion [5].

SSM models the joint distribution of clean and noisy speech fea-
tures by a Gaussian mixture model (GMM) based on which the clean
features are predicted from the observed noisy features under cer-
tain criterion, for instance, minimum mean square error (MMSE)
or maximum a posteriori (MAP). In this work, we aim to achieve
decent ASR performance under seen and unseen noisy conditions
by noise compensation taking into account the acoustic context in
the SSM framework. To that end, the data from the noisy channel
are collected from a variety of conditions covering diverse types of
noise and signal-to-noise ratios (SNRs). The compensation of noisy
features from unseen conditions can be approximated by a condi-
tion corresponding to the closest point, in the sense of MMSE, in
the space spanned by the seen conditions. To capture the statistical
structure of the space of the seen conditions, full covariance is used
in the estimation of the joint GMM instead of diagonal covariance
used in most of the previous stereo-based approaches [1][2][4].

Including acoustic context in the SSM will dramatically increase
the dimensionality of the joint feature space, especially when the
context is wide, which may raise an issue for reliable parameter esti-
mation. Probabilistic PCA (PPCA) [6] is employed to reduce the di-
mensionality of the noisy features with context and, in the meantime,

still keep the most significant structural information of the space by
the eigen representation for the prediction of clean features. Carried
out in a probabilistic framework, mixture of PPCA can be seamlessly
embedded into the estimation of the joint GMM. Approximation by
single-pass re-training is also investigated to reduce the computa-
tional cost and turn-around training time.

As an interesting note, we will show the connection between the
MMSE estimate of SSM and subspace speech enhancement [7][8].
In a space where low dimensional representation of clean speech
and uncorrelated additive noise can be assumed the MMSE esti-
mate of SSM without context is analogous to the subspace speech
enhancement under colored noise. With context being considered,
the MMSE based SSM can be seen as an extension of the latter.

The remainder of the paper is organized as follows. Section 2
gives the MMSE estimate of SSM with context. Section 3 describes
the eigen representation of the noisy features with context by PPCA
and approximation by single-pass re-training for training speedup.
Section 4 shows the relationship between the MMSE estimate of
SSM and subspace speech enhancement. Experimental results on
large vocabulary continuous speech recognition (LVCSR) tasks un-
der seen, unseen and real noisy conditions are presented in Section
5.

2. SSM WITH CONTEXT

Let zt = (xt, ȳt) be the joint vector with xt being the clean feature
at time t and ȳt being the noisy feature at time t with 2c (c > 0)
frames of context

ȳt = [yt−c · · · yt−1 yt yt+1 · · · yt+c]. (1)

The distribution of zt is assumed to be GMM as shown in Eq.2

p(zt) =
KX

k=1

wkN (zt; μz,k, Σzz,k) (2)

where K is the number of Gaussian components, wk, μz,k, and
Σzz,k are the mixture weight, mean, and covariance of each com-
ponent, respectively. p(zt) can be estimated by the EM algorithm
[9]. The mean and covariance have a partition with respect to the
clean feature x and noisy feature with context ȳ

μz,k =

»
μx,k

μȳ,k

–
, Σzz,k =

»
Σxx,k Σxȳ,k

Σȳx,k Σȳȳ,k

–
. (3)

Given the observed noisy speech feature with context, ȳt, the MMSE
estimate of the clean speech xt is [1]

x̂t = E[xt|ȳt]. (4)

From the joint GMM in Eq.2,

x̂t =
X

k

p(k|ȳt)
ˆ
μx,k + Σxȳ,kΣ−1

ȳȳ,k(ȳt − μȳ,k)
˜

(5)
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The posterior probability, p(k|ȳt), is computed against the marginal
noisy distribution p(ȳt) of the joint distribution p(zt).

3. EIGEN REPRESENTATION BY PPCA

The noisy channel of the stereo data in the training encompasses a
wide range of conditions with diverse types of noise and SNRs. As
illustrated in Fig.1, the same acoustic sound under various noisy con-
ditions may possess distinct structures in the feature space. There-
fore, even though diagonal covariance Gaussians are a reasonable
assumption sometimes for the clean condition, full covariance Gaus-
sians will give a more accurate description of the data structure in the
multi-condition case. Furthermore, with the acoustic context being
taken into consideration, full covariance Gaussians can also model
the correlation of adjacent frames. This is the motivation behind
using a full covariance joint GMM in Eq.2 in this work.
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Fig. 1. Illustration of the effect of clean speech corrupted under
multiple noisy conditions.

SSM with context may lead to a high dimensionality in ȳ, es-
pecially when the context is wide. With full covariance assumed, a
reliable estimation of the joint GMM can be an issue. To deal with
it, PPCA is used for the eigen representation of ȳ space to reduce the
parameter size to be estimated.

Let ξ be a latent variable. Assume the distribution of ȳ given ξ
in the kth Gaussian component of GMM is

p(ȳ|ξk) ∼ N (ȳ; Wkξk + μȳ,k, σ
2
kI) (6)

and the latent variable ξk itself obeys a Gaussian distribution with
zero mean and unit covariance

p(ξk) ∼ N (ξk; 0, I) (7)

From Eqs. 6 and 7, one has

pk(ȳ) ∼ N (ȳ; μȳ,k, WkW
T

k + σ
2
kI) (8)

Given the PPCA assumptions on ȳ in Eqs. 6-8, the parameters of the
joint GMM in Eq.2 has the following update equations based on the
EM algorithm:

μx,k =

PT

t=1
γk(t)xtPT

t=1
γk(t)

, μȳ,k =

PT

t=1
γk(t)ȳtPT

t=1
γk(t)

(9)

Σxx,k =

PT

t=1
γk(t)(xt − μx,k)(xt − μx,k)T

PT

t=1
γk(t)

(10)

where γk(t) = p(k|zt) is the posterior probability of component k
given the joint vector zt.

The autocovariance of ȳ under PPCA is

Σ̃ȳȳ,k = WkW
T

k + σ
2
kI (11)

According to [6], Wk and σ2
k can be computed as

Wk = Uk,q(Λk,q − σ
2
kI)1/2

, σ
2
k =

1

d − q

dX
j=q+1

λk,j (12)

where Λk,q = diag{λk,1, · · · , λk,q} contains the leading eigenval-
ues and Uk,q contains the eigenvectors corresponding to the leading
eigenvalues of the autocovariance matrix

Σȳȳ,k =

PT

t=1
γk(t)(ȳt − μȳ,k)(ȳt − μȳ,k)T

PT

t=1
γk(t)

(13)

In Eq.12, d is the dimension of ȳ and q is the number of principal
components to construct the eigen subspace.

The cross-covariance of x and ȳ with the latent variable ξk is
computed as

Σ̃xȳ,k =

PT

t=1
γk(t)

R
ξk

(xt − μx,k)[Wkξkp(ξk|ȳt)]
T
dξkPN

i=1
γk(i)

=

PT

t=1
γk(t)(xt − μx,k)(WkE[ξk|ȳt])

T

PT

t=1
γk(t)

(14)

Since

p(ξt|ȳt) ∼ N (ξt; M
−1

k W
T

k (ȳt − μȳ,k), σ2
kM

−1

k ) (15)

hence

E[ξk|ȳt] = M
−1

k W
T

k (ȳt − μȳ,k) (16)

where

Mk = W
T

k Wk + σ
2
kI (17)

Therefore,

Σ̃xȳ,k =

PT

t=1
γk(t)(xt − μx,k)

ˆ
WkM−1

k W T

k (ȳt − μȳ,k)
˜T

PT

t=1
γk(t)

=

PT

t=1
γk(t)(xt − μx,k)(ȳt − μȳ,k)T

WkM−1

k W T

kPT

t=1
γk(t)

= Σxȳ,kWkM
−1

k W
T

k (18)

where

Σxȳ,k =

PT

t=1
γk(t)(xt − μx,k)(ȳt − μȳ,k)T

PT

t=1
γk(t)

(19)

With μx,k, μȳ,k, Σxx,k, Σ̃yy,k and Σ̃xȳ,k in place, the kth Gaus-
sian component in the joint GMM in Eq.2 can be written as»

x

ȳ

–
∼ N

„»
x

ȳ

–
;

»
μx,k

μȳ,k

–
,

»
Σxx,k Σ̃xȳ,k

Σ̃T

xȳ,k Σ̃ȳȳ,k

–«
(20)

It is trivial to see that when σ2
k → 0,

Σ̃xȳ,k → Σxȳ,k (21)

The above iterative parameter update for the GMM with full co-
variance can be time-consuming when the context is wide and the
number of Gaussian components K is large. To speed up the train-
ing process, single-pass re-training [10] is used to reduce the com-
putational cost. A full covariance GMM model p(yt) with the same
number of Gaussian components as Eq.2 is built separately on the
noisy features yt without context. The posterior probabilities γk(t)
in Eqs. 9, 10, 13 and 19 are approximated by computing yt against
p(yt) instead of zt against p(zt)

γk(t) ≈ p(k|yt) (22)

Since the computation of γk(t) is conducted in a lower dimensional
space and the parameters are updated in only one iteration, the turn-
around training time is significantly reduced.
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4. SSM AND SUBSPACE SPEECH ENHANCEMENT

In this section, we draw a connection between the MMSE estimate
of SSM and subspace speech enhancement [7][8]. Although speech
enhancement techniques (including spectral subtraction as a special
case) may not always help for the noise robustness of ASR, we
would like to point out the relationship between the two as a note
from the speech enhancement perspective.

Suppose in a space Rd the clean speech can be assumed to oc-
cupy a low dimensional space

x = Ψs (23)

where s is an m-dimensional vector (m < d) and Ψ is a matrix with
linearly independent component vectors. The noisy speech y can be
expressed as

y = x + n (24)

where the additive noise n is assumed to be uncorrelated with x. For
instance, linear spectral or linear power spectral domain is a reason-
able space satisfying these assumptions. In such a space, when the
context in Eq.1 is zero, the SSM estimate in each Gaussian compo-
nent (dropping index k for notation simplicity) in Eq.5 is

x̂ = μx + ΣxyΣ−1
yy (y − μy) (25)

Under the assumption of uncorrelation between x and n, one has

Σxy = Σxx + Σxn ≈ Σxx, Σyy ≈ Σxx + Σnn (26)

First, assume n is white noise, based on the eigen-decomposition of
Σxx, it is easy to show that

Σxx = UΛxU
T
, Σnn = U(σ2

wI)UT

Σyy = UΛyU
T = U(Λx + σ

2
wI)UT (27)

where U is the eigenvector matrix and the diagonal matrix Λx =
diag(λx

1 , · · · , λx
m, 0, · · · , 0) contains the eigenvalues of Σxx. Under

the assumption of Eq.23, Λx has only m non-zero eigenvalues. Since
n is white, it shares the same eigenvectors as Σxx and σ2

w is its
energy. Therefore, Σyy in Eq.27 can be written as

[Um, Ud−m]

„»
Λx,m 0

0 0

–
+ σ

2
w

»
Im 0
0 Id−m

–« »
UT

m

UT

d−m

–
(28)

which shows that the noisy speech y space can be decomposed into
an m-dimensional signal-plus-noise subspace spanned by Um and
its complimentary noise-only subspace spanned by Ud−m. Accord-
ingly, Eq.25 can be written as

x̂ = μx + UmGmU
T

m(y − μy) (29)

where Gm is an m-dimensional diagonal matrix with gain gi on the
diagonal

gi =
λx

i

λx
i + σ2

w

(30)

which indicates that the denoising is carried out only in the m-
dimensional signal-plus-noise subspace. This is analogous to the
conventional subspace speech enhancement proposed in [7].

In most cases, noise n is not white so that Σxx and Σnn will
not have the same eigenvectors. A generalized subspace speech en-
hancement is discussed in [8] to deal with colored noise n based
on the simultaneous diagonalization. Given the two positive-definite
matrices Σxx and Σnn, there exists a matrix V such that

V
TΣxxV = Λx, V

TΣnnV = I (31)

In fact, V is composed of eigenvectors of matrix Σ−1
nnΣxx. The col-

ored noise n is whitened into white noise in the space spanned by V .
Given Eq.31, the covariance matrices Σxx and Σyy can be written
as

Σxy ≈ Σxx = V
−TΛxV

−1 (32)

Σyy ≈ Σxx + Σnn = V
−T(Λx + I)V −1 (33)

Accordingly, Eq.25 can be rewritten as

x̂ ≈ μx + ΣxxΣ−1
yy (y − μy)

= μx + V
−TΛx(Λx + I)−1

V
T(y − μy)

= μx + V
−T

m GmV
T

m(y − μy) (34)

where m is the rank of Σxx and the gain on the diagonal of the
diagonal matrix Gm is

gi =
λx

i

λx
i + 1

(35)

In this case, the colored noise is whitened and normalized to unit
energy. The denoising is again carried out in the m-dimensional
signal-plus-noise subspace spanned by Vm.

Based on the above discussion, in a particular space where as-
sumptions can be made on the low dimensional representation of
the clean speech x and uncorrelated additive noise n, the MMSE
estimate of SSM in each Gaussian component is analogous to the
subspace speech enhancement. However, the SSM framework has
the following distinctions. The MMSE estimate of SSM gives rise
to a mixture of linear signal estimator weighted by the posteriors.
In addition, the stereo data in the SSM provides an additional chan-
nel of clean speech signals from which Σxx can be precisely esti-
mated. This is the advantage of using stereo data comparing to the
conventional subspace speech enhancement in which Σxx is com-
puted by removing Σnn from Σyy and Σnn is estimated from the
noise samples of the speech-absent frames. Furthermore, in the SSM
framework, context information from adjacent frames can be triv-
ially taken into account as shown in Section 2, which is not straight-
forward for the conventional subspace speech enhancement. There-
fore, the MMSE estimate of SSM with context in such a space can
be considered an extension of the conventional subspace speech en-
hancement from that perspective.

5. EXPERIMENTAL RESULTS

Experiments on English LVCSR tasks were conducted on the pro-
posed approach. The acoustic model trained on clean speech signals
has 5K quinphone states and 100K Gaussians. The trigram language
model with 330K n-grams is built on a vocabulary of 45K words
and 56K pronunciations. The feature space is constructed by splic-
ing 9 frames of 24-dim PLP features and projecting down to a 40-
dim linear discriminant analysis (LDA) space with a global semi-
tied covariance (STC) transformation. The acoustic model is trained
with both feature and model space discriminative training (FMMI
and BMMI) [11]. The SSM is performed in the final 40-dim FMMI
space where the noisy features are compensated and decoded using
the clean acoustic model.

For the training of SSM, the clean channel consists of 60 hours
of continuous speech signals. The noisy channel is artificially gen-
erated by corrupting the clean speech with various types of noise
from the NOISEX-92 dataset including M109, Buccaneer, Leopard,
wheel carrier, destroyer operation room, HF radio, babble, factory,
car and white noise. Each utterance in the training set is randomly
corrupted by one type of the noise from the above set at a random
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SNR from 25dB to 10dB. The test sets are composed of three scenar-
ios: seen conditions (Set A), unseen conditions (Set B) and real con-
ditions (Set C). In Set A, Buccaneer, destroyer operation room, bab-
ble, factory and car noise are added to the DARPA Transtac Nov08
offline test set (10 speakers, 0.7 hours) at an SNR randomly selected
from the range of 20dB to 5dB. In Set B, Lynx, machine gun, STI-
TEL, F-16 and pink noise are added to the DARPA Transtac Oct09
offline test set (11 speakers, 0.6 hours) at an SNR randomly selected
from the range of 20dB to 5dB. The Set C (7 speakers, 1.9 hours)
consists of the speech data recorded under the humvee-tank noise
with SNRs estimated at 5-8dB.

As a baseline, Table 1 shows the word error rates (WERs) of the
three noisy test sets without SSM compensation. In particular, for
the two artificially generated noisy test sets A and B, WERs of the
original clean speech are also presented.

dataset Set A Set B Set C

clean condition 13.8 21.2 –
noisy condition 37.3 45.7 38.2

Table 1. WERs(%) of the baseline for clean and noisy conditions
without SSM compensation.

dataset Set A Set B Set C

K=256, c=0, q=40 27.8 37.6 30.0
K=256, c=1, q=120 27.2 37.3 27.5
K=256, c=1, q=100 27.4 37.0 26.8
K=256, c=1, q=90 27.2 36.7 26.6
K=256, c=1, q=80 26.9 37.0 26.9

Table 2. WERs(%) of SSM compensation using 256 Gaussian com-
ponents without (c=0) and with (c=1) context. Results of different
numbers of principal components in PPCA are shown when context
is 1.

dataset Set A Set B Set C
components 1024 2048 1024 2048 1024 2048

c=0, q=40 29.1 29.4 38.0 38.0 28.9 28.9
c=1, q=120 28.7 28.8 37.8 37.5 27.9 27.6
c=1, q=100 28.1 27.8 37.1 36.9 27.3 27.3
c=1, q=80 28.0 27.8 36.9 36.9 27.4 27.1
c=1, q=60 28.5 28.1 37.4 36.9 27.4 27.5

c=2, q=200 28.8 29.0 37.7 37.8 27.3 27.4
c=2, q=160 27.9 27.8 37.3 36.9 26.9 26.6
c=2, q=140 27.8 27.8 37.2 36.9 26.9 26.9
c=2, q=120 27.6 27.7 37.3 37.0 26.9 26.5
c=2, q=100 28.1 27.9 37.4 37.0 27.3 26.8

Table 3. WERs (%) of SSM compensation with various Gaussian
components, contexts and principal components of PPCA. The es-
timation of the joint GMM of SSM is approximated by single-pass
re-training.

Table 2 shows the WERs with SSM compensation. There are
256 Gaussian components (K) in the joint GMM of SSM. When
c = 0, no acoustic context information is used in the SSM and, ac-
cordingly, no PPCA is applied in this case. The number of principal
components (PCs) q is set to 40 which is equal to the dimensional-
ity of the noisy features. When the context is set to 1 (c = 1), the
dimensionality of the noisy features with context is 120. Table 2
demonstrates the performance of PPCA with various numbers (q) of
PCs. The best performance is achieved in the three test sets when

q is somewhere around 90 to 80. From the table, SSM with context
obtains superior performance over SSM without context and it helps
for all three test scenarios.

Table 3 shows the WERs with SSM compensation under various
Gaussian components (K), contexts (c) and PCs (q). The training
of the joint GMM of SSM in this case is approximated by single-
pass re-training. From the table, it can be observed that single-pass
re-training sacrifices certain degree of performance for the training
speedup. With wider context, better performance can be yielded.
The results indicate that, with 1024 or 2048 Gaussian components,
best WERs under PPCA are achieved when q is around 100 to 80 for
context c = 1 and when q is around 140 to 120 for context c = 2.
Again, SSM with context helps for all three test scenarios.

In summary, SSM with context using full covariance is investi-
gated in this paper. PPCA is employed to reduce the dimensionality
in the GMM framework for reliable parameter estimation. The es-
timation of the joint GMM is approximated by single-pass training
for a significant reduction of training time. In current experiments,
however, the noise compensation time grows when the context gets
wider. Strategies for compensation speedup will be studied in the
future work.
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