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ABSTRACT

This paper proposes a novel approach for noise-robust speech recog-
nition which combines a missing-data (MD) derived spectral recon-
struction technique and uncertainty decoding based on the weighted
Viterbi algorithm (WVA). First, the noisy feature vectors are com-
pensated by using a novel MD imputation technique based on the
integration of truncated Gaussian pdfs. Although the proposed MD
estimator has both the advantages of MD techniques and the use of
cepstral features, it may still be affected by a number of uncertainty
sources. In order to deal with these uncertainties, WVA-based uncer-
tainty decoding is proposed. Our experiments on the Aurora-2 and
Aurora-4 tasks show that the proposed MD estimator outperforms
other MD imputation techniques. Also, we show that the combina-
tion of MD imputation with WVA provides better results than the
combination with other uncertainty processing techniques such as
the use of evidence pdfs for the estimated features.

Index Terms— Missing data imputation, uncertainty decoding,
MMSE estimation, speech recognition

1. INTRODUCTION

Feature compensation (or feature enhancement) techniques for ro-
bust speech recognition deal with speech distorted by different kinds
of noise sources (e.g. additive noise, channel distortion). The aim of
these techniques is to remove as much noise as possible while keep-
ing speech intelligible. Over the last few years, one approach that has
proved to be very effective in this task is the missing data framework
[1, 2]. This framework considers that, when speech is distorted by
noise, some parts of speech spectra will be more affected than oth-
ers. In this sense, the parts where the energy of speech dominates
can be considered reliable, whereas those regions dominated by the
energy of the noise are unreliable.

Two different approaches have been considered in the miss-
ing data framework to perform speech recognition with incomplete
data: marginalization and imputation [1]. In the marginalization ap-
proach, speech decoding relies on the reliable parts of spectra, while
the unreliable parts are discarded or marginalized up to the observed
values. The imputation approach makes use of the redundancy in
speech signals to estimate the missing data and, then, speech recog-
nition is performed as usual. As can be noted, the strength of both
approaches is that few or no assumptions about the corrupting noise
are made (these assumptions are embedded in the reliable/unreliable
classification process).

∗This work has been supported by an FPU grant from the Spanish Min-
istry of Education and by projects MICINN TEC2010-18009, CEI BioTIC
GENIL (CEB09-0010) and UK EPSRC grant EP/G039046/1 .

While marginalization is known to perform optimal classifica-
tion with missing data [2], it suffers from several drawbacks. First,
recognition has to be carried out with spectral features. It has been
shown that recognition using cepstral features outperforms that using
spectral features [2]. Second, no usual feature compensation tech-
niques such as cepstral mean normalization (CMN) can be applied.
Third, the standard decoding algorithm must be modified to account
for the missing values in the marginalization approach. Finally, since
spectral features are correlated with each other, the acoustic model
(hidden Markov models) needs to employ Gaussian mixtures with
with full covariance matrices or an increased number of Gaussians
with diagonal covariance. This could be computationally prohibitive
in some cases, e.g. in large vocabulary continuous speech recogni-
tion systems [1].

This paper proposes a novel imputation technique that produces
full-band reconstructed spectra, which can be later transformed to
the cepstral domain. In order to apply this spectral reconstruction, a
Gaussian mixture model (GMM) is trained on clean speech. In this
way, the correlation between features is explicitly modeled and used
for reconstruction. Moreover, the use of truncated Gaussian distribu-
tions allows the exploitation of the boundary information provided
by the masking noise.

It has been shown [1, 2] that imputation techniques tend to be
very sensitive to errors in the identification of missing data. These
errors result in poor spectral reconstruction that degrades recogni-
tion performance. Thus, we also propose here a joint scheme where
the reliability of the reconstruction is first estimated and, then, this
information is propagated to the decoder as a weighting factor, so
that more reliably reconstructed frames are weighted more.

This paper is organized as follows. In Section 2, the mathemati-
cal formulation of the missing data reconstruction is derived. Section
3 describes the proposed joint scheme for uncertainty computation
and its exploitation in the decoder. The experimental framework and
the results are presented in Section 4. Finally, Section 5 concludes
this paper and discusses future work.

2. SPECTRAL RECONSTRUCTION USING TRUNCATED
GAUSSIAN DISTRIBUTIONS

Let x, n, and y be the log-filterbank feature vector representations
(e.g. log-Mel) corresponding to frames of clean speech, additive
noise, and noisy speech, respectively. Because of the logarithmic
compression applied to the filterbank outputs, the following approx-
imation can be made,

y ≈ log(ex + en) ≈ max(x,n) (1)

According to (1), y can be rearranged into y ≡ (yr,yu), where
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yr ≈ xr are the reliable features (those where the speech energy
dominates, xr > nr), and yu (−∞ ≤ xu ≤ yu) are the unreliable
features (the noise energy dominates in those features, xu < nu)1.

In order to compensate for the effects of noise, a minimum mean
square error (MMSE) estimator for xu exploiting the known corre-
lations with xr can be derived. The general form of this estimator is
given by,

x̂u = E [xu|xu ≤ yu,xr ] =

∫ yu

−∞
xup (xu|xr,yu) dxu (2)

If we now make the usual assumption that clean speech can be
well modeled by a GMM, the resulting MMSE estimator is the well-
known cluster-based reconstruction proposed in [2]:

x̂u =
∑
k

P (k|xr,yu) x̂
k
u (3)

where P (k|xr,yu) is the posterior probability for the kth Gaussian
in the GMM and x̂k

u is the partial estimate for xu given this Gaus-
sian.

As can be observed in (3), the MMSE estimator reduces to the
computation of the probabilities and the expected values in the sum.
First, we analyze the problem of computing P (k|xr,yu). Applying
Bayes’ rule, we obtain:

P (k|xr,yu) =
p (xr,yu|k)P (k)∑
k′ p (xr,yu|k′)P (k′)

(4)

with P (k) being the prior probability for the kth Gaussian. The
probability p (xr,yu|k) can be computed by marginalizing over the
unreliable features xu up to the observed ones yu:

p (xr,yu|k) =
∫ yu

−∞
p (xr,xu|k) dxu

= p(xr|k)
∫ yu

−∞
p(xu|xr, k)dxu (5)

Both probability density functions (pdfs) p(xr|k) and p(xu|xr, k)
can be shown to be Gaussian distributed: the parameters of the
marginal distribution p(xr|k) = N (xr;μ

k
r ,Σ

k
rr) are obtained

from the original pdf N (x;μk,Σk) by partitioning μk and Σk into
their reliable and unreliable features as,

μk =

(
μk

r

μk
u

)
(6)

Σk =

(
Σk

rr Σk
ru

Σk
ur Σk

uu

)
(7)

The mean and covariance of the conditional pdf p(xu|xr, k) =
N (xu;μ

k
u|r,Σ

k
u|r) are

μk
u|r = μk

u +Σk
ur

(
Σk

rr

)−1 (
yr − μk

r

)
(8)

Σk
u|r = Σk

uu −Σk
ur

(
Σk

rr

)−1

Σk
ru (9)

The main problem of computing the integral of (5) is that no
closed-form solution exists for Gaussian pdfs with non-diagonal co-
variance. Thus, we must resort to some approximations to make
the integral tractable. In [2], Raj et al. considered diagonal covari-
ance matrices Σk in (7) for every Gaussian in the GMM. With this

1We assume that a missing data mask is already available, so that unreli-
able/reliable regions can be identified.

approximation, the integral is now computable, but the correlation
between features is only captured via the Gaussian component vari-
able k. Faubel et al. [3] proposed an alternative approach in which
a linear transformation is applied to diagonalize the covariance ma-
trix Σk

u|r in (9). After the transformation, the multivariate integral
reduces to univariate integrals in the transformed domain, so that it
can be computed. However, the integration limits are also modified
by the transformation being non-aligned with the new axes. Never-
theless, this is not considered in Faubel’s approach.

In this work, we will assume that the covariance Σk
u|r in (9) is

diagonal. This way, the integral of (5) can be computed, whereas
the correlation between reliable features is exploited in the form of
p(xr|k). Applying this approximation, p (xr,yu|k) can be com-
puted as,

p (xr,yu|k) ≈ p(xr|k)
∏
i

∫ yu,i

−∞
p(xu|xr, k)dxu

= N
(
xr;μ

k
r ,Σ

k
r

)∏
i

Φ
(
zku,i

)
(10)

where Φ(·) is the Gaussian cumulative distribution function and zku,i
is the standardized value for yu,i regarding the kth Gaussian:

zku,i =
yu,i − μk

u|r,i
σk
u|r,i

(11)

Let us now consider the computation of x̂k
u in (3). This term

corresponds to the following expected value:

x̂k
u = E [xu|xu ≤ yu,xr, k] =

∫ yu

−∞
xu · p (xu|xr,yu, k) dxu

≈
∫ yu

−∞
xu · p (xu|xr, k) dxu (12)

where p (xu|xr, k) is the same pdf as in (5). Again, the integral
of (12) has a closed-form only for Gaussian pdfs with diagonal co-
variance matrices. Thus, applying the diagonal approximation, we
can compute this expected value, which corresponds to the mean of
a truncated Gaussian distribution defined in the interval (−∞, yu,i]
for each unreliable feature i [4]:

x̂k
u,i = μk

u|r,i − σk
u|r,i

N (zku,i)

Φ(zku,i)
(13)

3. INCORPORATING RECONSTRUCTION
UNCERTAINTY INTO DECODING

The reconstruction performed by the proposed imputation technique
cannot be considered as completely reliable. Factors such as the
SNR of input signals, the degree of noise stationarity and the accu-
racy of mask estimation will affect the performance of the proposed
estimation in (3). For these reasons, we first derive an estimator
for the expected accuracy of the reconstruction based on the vari-
ance of the estimation. A modified decoding algorithm based on
the weighted Viterbi algorithm (WVA) [5, 6] is then employed to
accommodate the estimation uncertainty.

A common way to estimate the accuracy of an estimator is by
means of its variance. Assuming no uncertainty during mask esti-
mation, the variance for frames with many unreliable features will
be high, whereas for totally reliable frames it should be zero. The
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Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Avg. R.I.%

Baseline 99.11 94.74 84.67 62.35 33.45 14.17 8.05 56.65 -

Oracle
experiments

WVA 99.13 96.75 94.11 85.62 66.96 42.49 22.39 72.49 27.96
Imputation 99.11 99.01 98.75 97.99 96.11 90.90 77.34 94.17 66.23

Imputation+WVA 99.13 98.93 98.78 98.26 97.02 93.10 82.71 95.42 68.44

Real
experiments

Imputation 99.10 96.95 94.19 87.56 74.33 48.69 20.40 74.46 31.44
Imputation+WVA 99.17 97.36 95.05 89.11 77.03 51.09 20.98 75.68 33.59

Table 1. Word accuracy results (%) for Aurora-2 database at different SNRs.

covariance matrix associated to the MMSE estimation in (2) is de-
fined as the following expected value:

Σx̂u = E
[
(xu − x̂u)(xu − x̂u)

T |xu ≤ yu,xr

]
(14)

Assuming again a GMM for clean speech, we obtain the covari-
ance for the estimation in (3) as,

Σx̂u =
∑
k

P (k|xr,yu)
(
Σ̃k

u|r + (x̂k
u − x̂u)(x̂

k
u − x̂u)

T
)
(15)

with Σ̃k
u|r being the covariance associated with the partial estimate

x̂k
u computed in (13). In order to compute this matrix, we consider

the case of a truncated Gaussian distribution defined by the condi-
tional pdf p(xu|xr, k) = N (xu;μ

k
u|r,Σ

k
u|r) with upper bounds

yu. For this case, the variance is given by [4],

σ̃k,2
u|r,i = σk,2

u|r,i

(
1− N (zku,i)

Φ(zku,i)

(
zku,i +

N (zku,i)

Φ(zku,i)

))
(16)

where we have again assumed independence between the unreliable
features given the reliable ones.

Once estimated, the uncertainty of the missing-data reconstruc-
tion can be employed by the speech recognizer. There have been
several attempts to exploit the uncertainty during speech recogni-
tion, most of them being based on the uncertainty decoding approach
[7, 8, 5]. In this approach, a Gaussian evidence pdf is considered for
every estimate. The uncertainty of the estimation is taken into ac-
count during recognition by adding the variance of the estimate to
the model variances. The work such as [9, 10] has explored this ap-
proach under the missing-data framework. The problem in this case
lies in how the estimated variances are transformed from the log-
spectral domain, where the imputation is performed, to the cepstral
domain. In [9] regressions trees are trained to learn the nonlinear
transformation between both domains. Alternatively, a linear trans-
formation matrix is trained using stereo-data in [10].

This paper considers an uncertainty decoding scheme based on
WVA. Instead of propagating the variance of the estimation to the
decoder, a time-varying weighting factor γt ∈ [0, 1] (one per frame)
is used, so that the contribution of unreliable feature vectors is di-
minished. Hence, the state metrics updating equation used in the
decoding stage is,

φt(sj) = max
si

{φt−1(si)aij} p(xt|sj)γt (17)

where si and sj are states of the acoustic model, aij and p(xt|sj)
correspond to the transition and observation probabilities, and
φt(sj) is the likelihood of the best decoding path for the state
sj at time t.

As can be observed, WVA reduces to a simple multiplication in
the logarithm domain, thus being very efficient in comparison with

other uncertainty decoding approaches, e.g. variance propagation.
Furthermore, we have shown in previous work [5, 11] that WVA can
outperform these approaches.

In order to compute the weight γt in (17), we first define a un-
certainty function for the estimation carried out by (3). In this work,
we propose a uncertainty function based on the mean square error
(MSE) for the estimate. In this way, the uncertainty of a frame will
be proportional to the MSE computed for the unreliable features of
this frame. The MSE for x̂u can be computed as the trace of the
covariance matrix for the estimate:

ε = tr(Σx̂u) (18)

Finally, the weighting factor γ used by WVA is generated by
applying a sigmoid compression to ε:

γ = 1− 1

1 + e−α(ε−β)
(19)

where α, β are the sigmoid slope and centre, respectively. These
parameters are empirically derived.

4. EXPERIMENTS AND RESULTS

The proposed techniques have been evaluated on Aurora-2 [12] and
Aurora-4 [13] databases using acoustic models trained on clean
speech. For the connected digit Aurora-2 task, left to right continu-
ous density HMMs with 16 states and 3 Gaussians per state are used
to model each digit. In the case of the large vocabulary Aurora-4
task, continuous cross-word triphone models with 3 tied states and
a mixture of 6 Gaussians per state are used. The language model is
the standard bigram for the WSJ0 task.

Speech features are extracted according with the European
Telecommunication Standards Institute front-end (ETSI FE, ES 201
108) [14]. The final feature vector employed by the recognizer
consists of 12 Mel-Frequency Cepstral Coefficients (MFCCs) and
0th order cepstral coefficient along with their delta and delta-delta
coefficients. For spectral reconstruction, 23-component feature vec-
tors corresponding to the outputs of the log-Mel filterbank are used.
After reconstruction, the discrete cosine transform (DCT) is applied
to obtain the final cepstral parameters.

Spectral reconstruction is performed using a 256 component
GMM with full covariance matrices. Training is carried out on the
same clean dataset as for acoustic model training. Two types of
binary missing-data masks are employed to evaluate the proposed
imputation technique: oracle and real masks. Oracle masks are
obtained by direct comparison between clean and noisy spectra, thus
allowing us to evaluate the potential of the proposed techniques.
More realistic masks are obtained by estimating the noise spectrum,
which is computed by averaging a given number of frames extracted
from the beginning and end of every noisy utterance. In both cases
(oracle and real masks), a SNR threshold is applied to obtain binary
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T-01 T-02 T-03 T-04 T-05 T-06 T-07 T-08 T-09 T-10 T-11 T-12 T-13 T-14 Avg. R.I.%

Baseline 87.26 38.11 34.17 54.96 39.34 34.15 31.31 62.92 29.33 25.74 40.31 28.88 23.61 22.17 39.45 -

Oracle
WVA 87.26 56.19 50.76 73.30 52.23 47.49 46.29 68.67 42.48 40.48 55.80 38.91 31.09 33.40 51.74 31.16

Imputation 87.26 85.48 84.53 86.31 84.10 83.71 83.00 76.42 73.68 73.64 76.26 72.65 70.60 70.99 79.19 100.74
Imputation+WVA 87.26 85.78 84.46 86.33 84.46 84.16 83.41 77.56 75.83 76.18 77.38 73.47 72.73 73.16 80.16 103.20

Real
Imputation 87.00 55.86 58.47 80.93 52.98 59.07 61.70 73.01 46.65 50.05 67.79 45.45 48.09 53.37 60.03 52.18

Imputation+WVA 87.41 59.99 62.53 82.01 55.97 61.22 64.28 72.56 47.75 51.19 68.17 46.33 49.67 52.27 61.53 55.97

Table 2. Aurora-4 word accuracy results (%) for the different test sets.

missing data masks. As suggested in [1], a feature is considered
reliable if its local SNR is greater than 3 dB. Finally, the parameters
α and β of (19) are experimentally determined for each database
using a small development set extracted from the multicondition
training set.

Table 1 shows the word accuracy results (WAcc) for the Aurora-
2 database. The three test sets of Aurora-2 are considered for com-
puting the average results per SNR. In addition, the overall average
(Avg.) and the relative improvement (R.I.) regarding the baseline for
every technique are also shown. Baseline results are obtained apply-
ing acoustic models trained with clean speech and no compensation.

The oracle experiments use oracle missing-data masks and/or or-
acle uncertainties. Oracle uncertainties are obtained as the squared
error between the utterance to be recognized and its corresponding
clean one, both expressed in the cepstral domain. After the computa-
tion of this error, the sigmoid compression of (19) is applied. On the
other hand, real masks and uncertainties derived from the estimator
MSE are used in the real experiments.

As can be seen in Table 1, decoding with noisy utterances and
oracle uncertainties (WVA) achieves an improvement of 27.96 %.
This shows the potential benefits of this technique. Significant rel-
ative improvements of 66.23 % and 31.44 % over the baseline are
achieved by the proposed imputation technique when oracle and real
masks, respectively, are used. For comparative purposes, the relative
improvements obtained by Raj’s reconstruction [2] are 63.48 % with
oracle masks and 29.48 % with real masks. The proposed ensemble
approach Imputation+WVA produces the best recognition results. In
this case, the improvement is especially noticeable at medium and
low SNRs.

Table 2 shows the WAcc results (%) obtained for the different
test sets in the Aurora-4 database: sets T-01 to T-07 are distorted
by additive noise and sets T-08 to T-14 are distorted by additive and
convolutive noise (T-01 and T-08 correspond to clean speech). Here
the improvement achieved by the proposed approach is bigger than
in Aurora-2, given the higher task complexity of Aurora-4. Among
all the noise conditions, only the real mask results for set T-04, which
corresponds to the quasi stationary car noise, are comparable to those
obtained using oracle masks. This indicates that a better mask esti-
mation technique is needed for this database, rather than the simple
noise estimation using the first and last frames of the utterance. By
comparing Imputation+WVA with the approach proposed Srinivasan
et al. in [9] (i.e., imputation plus variance propagation), we see that
our proposal outperforms the variance-based one. Under oracle con-
ditions, the average WAcc (%) for sets T-02 to T-072 achieved by our
proposal is 84.77 %, whereas Srinivasan’s approach yields a perfor-
mance of 79.42 %.

5. CONCLUSION AND FUTURE WORK

This paper has presented a novel noise-robust approach to automatic
speech recognition by combining feature enhancement and uncer-

2Srinivasan’s approach is tested only in these test sets in [9].

tainty exploitation. A spectral reconstruction technique based on the
missing data framework is proposed to estimate those spectral re-
gions corrupted by noise. To do so, the information provided by
the reliable regions and a joint statistical distribution modeling the
correlation between features are used. As the reconstruction pro-
vided by the proposed technique cannot be considered fully reliable,
a modified decoding algorithm based on the weighted Viterbi algo-
rithm is also proposed, in which less reliable estimates are weighted
less by the decoder. The experimental results show the effective-
ness of this approach in both small and large vocabulary recognition
tasks.

In this work, a weighting factor γt per frame is employed by
the WVA to perform decoding. In this sense, a weighting factor per
feature is expected to provide better performance. Other future work
includes the extension of the proposed approach to allow the use of
soft masks.
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MMSE estimation and uncertainty processing for multienvironment robust speech
recognition”, IEEE Trans. Audio Speech Lang. Process., vol. 19, no. 5, pp. 1206–
1220, July 2011.

[6] N. B. Yoma, F. R. McInnes, and M. A. Jack, “Weighted Viterbi algorithm and state
duration modelling for speech recognition in noise ”, Proc. ICASSP, pp. 709–712,
1998.

[7] L. Deng, J. Droppo, and A. Acero, “Dynamic compensation of HMM variances
using the feature enhancement uncertainty computed from a parametric model of
speech distortion”, IEEE Trans. Speech Audio Process., vol. 13, no. 3, pp. 412–
421, May 2005.

[8] H. Liao and M. J. F. Gales, “Issues with uncertainty decoding for noise robust
automatic speech recognition”, Speech Comm., vol. 50, no. 4, pp. 265–277, 2008.

[9] S. Srinivasan and D. Wang, “Transforming binary uncertainties for robust speech
recognition”, IEEE Trans. Audio Speech Lang. Process., vol. 15, no. 7, pp. 2130–
2140, Sep. 2007.

[10] J. F. Gemmeke, U. Remes, and K. J. Palomäki, “Observation uncertainty measures
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