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ABSTRACT 
 
In this paper we propose a new approach of two-dimensional frame-
and-feature weighted Viterbi decoding performed at the recognizer 
back-end for robust speech recognition. A new SVM-based frame 
weighting approach is proposed considering the energy distribution 
and harmonicity of the frame. The feature weighting is based on a 
previously proposed approach using an entropy measure considering 
confusion between phoneme classes. These two different weighting 
schemes on the two different dimensions are then properly 
integrated in Viterbi decoding in this paper. Extensive experiments 
performed with the Aurora 4 testing environment showed significant 
improvements. 
 

Index Terms— robust, SVM, Viterbi, weighted 
 

1. INTRODUCTION 
 
Robust speech recognition under noisy conditions has been an 
important yet unsolved problem. Many very successful feature-based 
and model-based approaches have been defined using more robust 
features or models [1-2]. Weighted Viterbi decoding [3-5] have also 
been proved to be useful, in which during the back-end Viterbi 
decoding process different weights can be assigned to the acoustic 
scores obtained from different frames or different feature parameters 
considering the discriminative power as well as the reliability of the 
different features or frames. A confusion-based feature weighting 
scheme was proposed earlier to emphasize in decoding the scores 
obtained with more discriminating feature parameters causing less 
confusion between phoneme classes [5], but this scheme didn’t 
consider at all that some signal frames are more reliable and some 
others are seriously corrupted [6-7]. On the other hand, in another 
work different weights were assigned to different frames during 
decoding assuming some frames are more noisy than others [8-9], 
but the ways in which the weights are assigned cannot be easily 
learned in a new environment. 

In this paper we proposed a new two-dimensional frame-and-
feature weighted Viterbi decoding scheme. Reliable frames are 
identified and weighted higher based on an SVM classifier 
considering energy distribution and harmonicity of each frame. 
Scores obtained with more discriminating features causing less 
confusion between phonemes are also identified and weighted 
higher based on an entropy measure and a phoneme confusion 
matrix. Testing results on Aurora 4 showed very significant 
improvements. In fact, this approach is low-cost and easy to 
implement at the back-end decoder, therefore can be integrated with 
many existing feature-based and model-based approaches. 

 
2. PROPOSED APPROACH 

2.1. Overall picture 
 
The overall picture of the proposed approach is shown in Fig. 1. The 
top part (Blocks (A)(B)(C)) is the Confusion-based Feature 
Weighting with a Training Corpus, which estimates a Confusion 
Matrix from the training data off-line in advance and the Confusion 
Matrix is used to give different weights to different feature 
parameters in the back-end decoding. The central part (Blocks 
(D)(E)) is the conventional approaches: Feature Extraction followed 
by Front-end Feature Normalization (e.g. CMVN or HEQ). The 
lower left part (Blocks (H)(I)(J)(K)) is the SVM-based Frame 
Weighting. It estimates the local energy distribution et and 
harmonicity ht for each frame at time t, and trains an SVM classifier 
(Blocks (J)(K)) to determine a frame weighting parameter wt for 
each frame. The middle-right part is then the back-end Weighted 
Viterbi Decoding including weighting on both feature and frame 
dimensions (Blocks (F)(G)). The details of these parts and blocks 
will be explained below. 
 
2.2. Energy distribution and harmonicity estimation for 
each frame 
 
First consider Energy Distribution Estimation in Block (H) of Fig. 1. 
Very often the energy distribution of a signal frame tells whether the 
frame is reliable or noisy. So here for each signal frame, we first 
calculate the smoothed instantaneous energy e[n] for each signal 
sample n, which is the energy averaged within a small window of 
length L centred on the sample being considered. In the experiment 
reported below, there are 200 samples in each frame and L = 11. 
Therefore, we have an energy vector et of 200 components e[n] for 
each frame.  

We next consider Harmonicity Estimation in Block (I). The 
purpose is to detect the harmonic structure in the signals, which is 

 
 

Fig. 1.  Overall block diagram of the proposed approach 

4689978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



often a very strong indicator for voiced speech sounds, or relatively 
reliable parts in noise corrupted speech signals [10]. The input 
frames are first Hamming-windowed, low-pass filtered and 
transformed to the frequency domain using FFT. The squared 
magnitude spectrum of a frame is then cross-correlated with that of 
the previous frame for correlation lags ranging from -100 to 100 to 
give a harmonicity vector ht with 201 components for each frame at 
time t. The harmonic structure of a frame may be enhanced by the 
cross-correlation because of the short-term stationary property of 
voiced speech signals [10]. 
 
2.3. Support vector machine (SVM) classifier 
 
This is Blocks (J)(K) in Fig. 1 with a goal of giving a weight wt to 
each signal frame at time t. The training of these classifiers are as 
follows. Given a clean speech training corpus and its transcriptions, 
hidden Markov models (HMMs) can be trained and used to perform 
forced alignment on the clean training utterances. The voiced, 
unvoiced speech and non-speech frames can be located on the 
training utterances. We then add training noise to these clean 
training utterances, and then calculate the energy vector et and 
harmonicity vector ht with Blocks (H)(I) as mentioned above for 
each frame of these noisy utterances. The vectors (et and ht) of 
voiced frames are taken as positive examples while those of 
unvoiced and non-speech frames as negative examples to train two 
SVMs, one with et and the other with ht. In other words, we assume 
voiced frames are relatively more reliable than other frames in noisy 
speech. The weight parameter wt for each testing frame at time t to 
be used in block (G) in Fig. 1. is then  
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where De
t and Dh

t are the scores for the two SVMs for a testing 
frame t, and r is determined by a development set. So for positive 
frames Dt

e,h > 0 and exp(Dt
e,h) > 1, while for negative frames Dt

e,h < 0 
and exp(Dt

e,h) < 1. In this way we use the SVM Classifier output to 
emphasize speech frames with relatively stable energy distribution 
and strong voicing nature, very often the nuclei of voiced phonemes, 
which are usually the most reliable parts in noise-corrupted speech 
signals. 
 

2.4. Confusion-based feature weighting 
 

Here we adopt the basic approaches of the confusion-based feature 
weighting scheme proposed earlier [5], in which scores obtained 
with more discriminating feature parameters causing less confusion 
are emphasized while others de-emphasized in the back-end Viterbi 
decoding, but with slight modification to the confusion matrix used. 
This scheme is very briefly summarized below, for lack of space [5]. 

We first define a confusion matrix for each pair of 
monophone classes c and i, indicating how frequently each class i is 
misclassified as a given class c,  
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where countc(i) is the number of frames in the training corpus 
belonging to class i which are misclassified as belonging to the 
given class c, and C is the total number of monophone classes. The 
class i*

c is the most confusing class with respect to the given class c,  
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As a result, we have vc(i*
c) and vc (c) = 1 from Eqs. (2) and (3), and 

0 ≤ vc (i) ≤ 1 for all other i.  
For each testing feature vector at frame t, x(t) = { xd , d = 1,2,...,D } 

(i.e., d is the parameter index and D is the total number of feature 
parameters), the score pi

t,d obtained for the d-th parameter, xd , for a 
monophone class i can then be evaluated by a set of Gaussian 
Mixture models(GMM) for the monophone classes obtained from 
the clean training corpus. These scores are first normalized in Eq.(4) 
and then used in Eq. (5) below to evaluate a weighted entropy 
measure Hc

t,d considering both the distribution pi
t,d for all classes i 

and the confusion between all classes i and a given class c, 
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But this entropy measure Hc
t,d in Eq. (5) is only for a given class c, 

therefore should be averaged over all classes c weighted by pc
t,d 

(same as pi
t,d are used above except i replaced by c),  
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and the weight parameter Wt,d for the feature parameter xd in the 
frame at time t is, 
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where a is another parameter also determined by the development 
set. 
 

2.5.Two-dimensional frame-and-feature weighted Viterbi 
decoding 

 

In the back-end Viterbi Decoding of Blocks (F)(G) in Fig. 1, we can 
now perform the two-dimensional frame-and-feature weighted 
Viterbi decoding to give different weights to each frame and each 
feature parameter. The likelihood score for a given feature vector x(t) 
evaluated for the j-th state of a HMM in the recognizer is  
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where bj( ) is the observation distribution function for the j-th state, 
N( ) the Gaussian component for the state and the 
parameter d, m the mixture index, cj,m the mixture weight, μjmd and 
∑jmd the Gaussian parameters. In Eq. (8) wt is the frame weight in Eq. 
(1) and Wt,d is the feature weight in Eq. (7). 

 
3. EXPERIMENTAL CONDITIONS 

 
The experiments reported here were conducted on the AURORA 4 
testing environment, but only those sampled at 8 kHz. There are two 
sets of training data defined in Aurora 4, the clean training set and 
multi-condition training set, each consisting of 7138 utterances 
(about 12 hours). The clean training set, all recorded with the same 
type of microphone, was used to train the HMM models to be tested. 
But we created a different multi-condition training set of 7138 
utterances for this research. About 25% of these utterances are clean. 
The rest are partitioned into 5 equal subsets and added respectively 
with 5 different types of additive noise: White Gaussian, pink, 
factory, exhibition, and train station, with SNR values uniformly 
distributed between 10-20 dB and an average of 15 dB. The noise 
types here are purposely chosen to be quite different from those 
observed in the Aurora 4 testing sets (car, babble, restaurant, street, 
airport, train station), but with similar SNR conditions (average of 

C
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Fig. 2. Recognition accuracies (%) for Aurora 4 test sets 08-14 for frame 
weighting only, for CMVN alone and with different approaches applied in 
addition. 
 
15 dB for Aurora 4 multi-condition training sets). This specially 
designed multi-condition training set was used to train the SVM 
classifier in Sec. 2.3 and the confusion matrix {vc(i)} in Sec. 2.4. 
This is to show that the proposed approach can offer improved 
recognition performance without learning the noise types in the 
testing set, as will be reported below. We also defined a 
development set to determine the parameters r in Eq. (1) and a in Eq. 
(7). For the development set, 100 utterances were selected from the 
clean training set, and then added respectively with three different 
types of noise (white Gaussian, pink, and factory, different from 
those in the test sets) with SNR ranging between 10 dB and 20dB 
(with an average SNR of 15 dB), thus a total of 300 noisy utterances.  
 

4. EXPERIMENTAL RESULTS 
 
4.1. Recognition performance with frame weighting only 
 
We first tested the SVM-based frame weighting approach proposed 
here without feature weighting. The results compared with a 
previously proposed GMM-based approach (GMM) [9] for Aurora 4 
test sets 8-14 for different noise types with mismatched microphones 
are in Fig. 2, in which for each noise type the first two bars are 
respectively for the conventional CMVN and CMVN plus the 
previously proposed GMM scheme [9], while the last three bars are 
for the currently proposed SVM-based approach (SVM), 
respectively using the harmonicity ht alone, energy distribution et 
alone, and both. It can be found that the previously proposed GMM 
scheme offered very good improvements (bars 1 and 2), but the 
SVM-based approaches proposed here are clearly much better (bars 
3,4,5 V.S. 2) for all types of noise. Also, for the currently proposed 
SVM-based approach, harmonicity ht or energy distribution et alone 
was already better than the GMM-based scheme, while integrating 
the both was the best. So the two SVM classifiers respectively for ht 
and et are complementary and additive. The average error rate 
reduction (last set) were 18.22% (from 58.56% to 66.11%, bars 5 
V.S. 1) and 7.10% (from 63.52% to 66.11%, bars 5 V.S. 2) 
respectively compared to CMVN alone and the GMM-based scheme. 
We only show here the results for mismatched microphones for 
space limitation, although similar results were observed for the 
matched microphone (sets 1-7 of Aurora 4). 
 
4.2. Two-dimensional frame-and-feature weighting 
 
The results of applying the two-dimensional frame-and-feature 
weighted Viterbi decoding as in Eq. (8) are shown in Fig. 3. In this 

figure for each noise type of Aurora 4 test sets, the first three bars 
are for CMVN plus respectively feature weighting alone (wt= 1 in 
Eq. (8) ) , frame weighting alone (Wt,d =1), and two-dimensional 
frame-and-feature weighting (wt ≠ 1 and Wt,d ≠ 1). In this figure we 
can find that for all types of noise frame weighting was better than 
feature weighting, while two-dimensional frame-and-feature 
weighting integrating the two performed the best. So the weighting 
in the two different dimensions are actually additive. The average 
accuracy was 68.04% for the two-dimensional frame-and-feature 
weighting applied on top of CMVN, as compared to 64.87% for 
CMVN plus feature weighting alone or 66.11% for CMVN plus 
frame weighting alone.  
 
4.3. Integration with other front-end feature 
normalization approaches 
 
Here we replace CMVN by some other front-end feature 
normalization approaches, the very successful Histogram 
Equalization (HEQ), and the recently proposed Higher Order 
Cepstral Moment Normalization (HOCMN) [11]. We summarize the 
results in Fig. 4 again for test sets with mismatched microphones. In 
Fig. 4 in each set the first three bars are for CMVN, HEQ and 
HOCMN respectively, while the last three are for the proposed two-
dimensional weighting approaches applied in addition. We see in 
each case the proposed approach offered very significant 
improvements regardless of the approach used for feature 
normalization. In particular, HOCMN plus the proposed two- 
dimensional frame-and-feature weighting always performed the best 
for all types of noise including clean speech (first set in Fig. 4), with 
an average accuracy of 70.04% (last set) or an error rate reduction of 
27.70% as compared to 58.56% with CMVN alone. Note that the 
proposed weighting approach is simple and low-cost, easily 
implemented at the back-end decoder, thus can be easily integrated 
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Fig. 3.  Recognition accuracies (%) for Aurora 4 test sets 08-14 with feature-
weighting, frame-weighting, and two-dimensional weighting, all applied on 
top of  CMVN. 
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with many very successful feature-based approaches. The results 
here simply verified that such integration can offer very significant 
improvements. 
 

4.4. Further analysis 
 

Fig. 5 shows the change of the number of misclassified frames by 
the proposed approaches for 10 out of the 39 different monophone 
classes. In Fig. 5, all the numbers of misclassified frames were 
normalized by the total number of misclassified frames for the 
MFCC baseline recognition task. So the first bars for MFCC 
baseline for all the 39 classes (10 shown here) in Fig. 5, have a sum 
of 100%. The second bar is for CMVN, while the last three bars for 
the weighted decoding applied in addition. Consistent improvements 
can be observed for each class shown here using individual feature 
or frame weighting, while the proposed two-dimensional weighting 
improved more. The sum of the third bars for the 39 classes is 
51.36%, for the fourth bar is 49.68%, and for the last bar is 43.77%. 
This tells the relative reduction of misclassified frames. Consistent 
results can be found for the other 29 classes not shown here. 

In Fig. 6, we analyze the numbers of misclassified frames 
separated for each monophone class but based on the degree of 
confusion for each class. The horizontal axis of Fig. 6 is the order of 
degree of confusion. For example, for the monophone class /aa/ the 
largest group of misclassified frames were those classified to /ah/, 
and the next largest group were those classified to /ay/. So these 
numbers contributed to the first two sets of numbers in Fig. 6 
labelled as “1” and “2” on the horizontal axis. This was similarly 

done with all the 39 monophone classes, and these numbers from all 
the 39 monophone classes were added together, and then similarly 
normalized by the total number of misclassified frames in the MFCC 
baseline. Only the top 10 most seriously misclassified groups out of 
the 38 are shown for space limitation. From Fig. 6, we see the 
improvements obtained with the feature weighting (third bar) are 
more significant when a monophone is frequently confused with 
another, since the feature weighting used here considered the 
confusion very carefully. So the huge error reductions on the first 
several major error patterns (1-4 on the horizontal scale) contributed 
primarily to the improvements achieved by the feature weighting 
scheme. However, the improvements with the frame weighting 
scheme (fourth bar) are similar for all degree of confusion (1-10 on 
the horizontal scale, similarly for 11-38 not shown here). The error 
reductions for almost all degrees of confusion contributed to the 
improvements achieved by the frame weighting scheme. So 
weighting on the two different dimensions have different 
characteristics and complement each other, and integrating the two 
gave some further improvement (last bar). 

 
 

5. CONCLUSION 
 
In this paper, we propose a new approach for improved robust 
speech recognition by two-dimensional frame-and-feature weighted 
Viterbi decoding. An new SVM classifier was proposed for frame 
weighting based on energy distribution and harmonicity, while 
feature weighting is based on a previously proposed approach with 
an entropy measure considering confusion between monophone 
classes. Extensive experiments with the Aurora 4 testing 
environment under a wide range of noise types and SNR conditions 
showed significant improvements when applying these approaches 
on top of CMVN or other feature normalization schemes. 
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