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ABSTRACT

Typical mask estimation algorithms use low-level features to

estimate the interfering noise or instantaneous SNR. We pro-

pose a simple top-down approach to mask estimation. The

estimated mask is based on a specific hypothesis of the un-

derlying speech without using information about the interfer-

ence or the instantaneous SNR. In this pilot study, we observe

a 9% reduction in word error over a baseline recognition sys-

tem on the Aurora4 corpus, though much greater gains could

theoretically be achieved through improvements to the model

selection process. We also present SNR improvement results

showing our method performs as well as a standard MMSE-

based method, demonstrating that speech recognition can aid

speech enhancement. Thus, the relationship between recog-

nition and enhancement need not be one way: linguistic in-

formation can play a significant role in speech enhancement.

Index Terms— robust automatic speech recognition,

ideal binary mask, mask estimation

1. INTRODUCTION

One of the longstanding issues in automatic speech recog-

nition (ASR) is the acoustic mismatch between training and

testing data caused by the presence of noise. Many methods

have been proposed to increase the robustness of ASR sys-

tems to this problem. One approach uses the ideal binary

mask (IBM) to improve signal quality [1]. Given a spec-

tral representation of the input signal, the local SNR for each

time-frequency (T-F) unit can be calculated. The mask has a

value of unity where the local SNR exceeds some threshold

and zero elsewhere. More formally, the IBM is defined as

M(f, t) =

{
1 |S(f,t)|2

|N(f,t)|2 > θ

0 otherwise
(1)

where f is a frequency band and t represents a particular time

frame. S(f, t) and N(f, t) represent the amount of energy at

a T-F unit for the clean speech and interfering noise respec-

tively. The threshold θ is typically set to 0.

Once the mask has been calculated, it is multiplied by the

original signal to suppress noise-dominant T-F regions. The

IBM relies on a priori knowledge of the separate speech and

interference signals. In practice, only the mixed signal is ob-

served, so the mask must be estimated. Typical estimation

methods use low level signal information in attempting to es-

timate the interfering noise. In this pilot study, we propose an

alternative approach that uses top-down linguistic information

to estimate the characteristics of the underlying speech signal

and is largely agnostic to the interference present in the signal.

We show that recognition results can aid mask estimation, and

ultimately, speech enhancement.

In Section 2, we outline previous approaches to mask es-

timation, including other top-down approaches. Our mask es-

timation approach is presented in Section 3. Specific details

of our experimental setup are described in Section 4 and in

Section 5 results for both ASR and SNR improvements are

discussed. Section 6 presents conclusions and directions for

future work.

2. PREVIOUS WORK IN MASK ESTIMATION

Many mask estimation algorithms aim to estimate the noise

in Equation 1. One standard method of estimating the noise

is spectral subtraction, as used in [2]. Here, the noise is mod-

eled by averaging the non-speech frames in the signal. The

instantaneous SNR is then calculated and used to determine

the binary mask classification. Improved methods have also

been developed that increase the accuracy of the noise estima-

tion by tracking changes in non-stationary noise sources [3].

The focus of these techniques is modeling the noise source.

In the spectral subtraction-based techniques, the esti-

mated clean speech is obtained by subtracting the estimated

noise from the noisy speech signal. More recent techniques

have looked at estimating both the noise and the speech. In

[4], instead of comparing the estimated clean speech and

noise signals, models of the clean speech and noise-corrupted

speech are compared. Here, the focus is on the speech and

how the noise impacts the clean speech characteristics. While

this system produces an improvement over standard spectral

subtraction-based methods by using speech models, it does

not use higher level linguistic information.

One of the first systems to couple the recognition and

mask estimation process was that of Barker et al. [5], where
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the mask and speech were jointly decoded. The main issue

with this purely top-down based approach is the search for

binary mask labels is exponential. Barker et al. attempt to

alleviate this problem by first grouping the T-F units and as-

signing labels to the overall groups. However, this ties perfor-

mance to the accuracy of the initial groupings.

A more recent study [6] attempts to integrate the bottom-

up spectral subtraction-based methods with a top-down ap-

proach. Using a conservative mask, a HMM lattice was gener-

ated containing speech hypotheses at each frame. The lattice

is then rescored as the mask is updated based on comparisons

between the noisy signal and the HMM models. While the

system showed promising performance on a connected digit

recognition task, the performance of our implementation de-

graded on larger vocabulary tasks. Our method is most similar

to this system, but decouples the recognition and mask esti-

mation and allows recognition to be performed in the cepstral

domain with more robust features.

3. TOP-DOWN MASK ESTIMATION

We utilize a simple method for incorporating top-down lin-

guistic information in the mask estimation process. In con-

trast to most methods that build a single general acoustic

model, we build many simple acoustic models for specific

sub-phonetic units. In order to perform masking in the spec-

tral domain, we extract from each speech utterance a cochlea-

gram (a popular signal representation widely used for IBM

estimation and other purposes [7]). To generate the cochlea-

gram, the signal is passed through a 64 channel gammatone

filterbank to perform T-F decomposition. We also take the

cube root of each T-F unit to limit the dynamic range.

We force-align our clean speech training data to obtain

HMM state labels for each frame. For each state label, we

take all training frames corresponding to that state label and

create a mean spectral vector. Each mean vector is then unit-

normalized as we are only interested in the general distribu-

tion of energy across frequency bands. Our mask estima-

tion algorithm requires one further prior, a background energy

prior. For our study, we utilize a simple vector that assumes

equal energy in each frequency channel. However, a prior that

incorporates knowledge about channel or noise characteristics

could be used.

To illustrate the mask estimation process, we assume that

for each frame of the input signal, we know the corresponding

HMM state it is aligned with. To estimate the mask at each

frame, we compare the state model associated with that frame

to the background prior weighted by the relative energy at that

frame. We define the masking criterion as

M(f, t) =

{
1 αf,st > βfr

γ
t

0 otherwise
(2)

rt =
average frame energy

frame energy in frame t
(3)

where t is the time frame, f is the frequency band, αf,st is

the relative spectral energy in frequency f for the prior vector

associated with HMM state st, βf is the background prior,

and γ is a factor used for nonlinearity.

The masking criterion seeks to keep any T-F units that

should have strong energy based on the speech event that we

are observing. This is accomplished by seeing if the energy

percentage is greater for the speech prior than the weighted

background prior. Weighting the background prior modifies

the prior based on the amount of energy in a frame. We as-

sume frames containing more energy are more likely to have

strong speech energy also, though we recognize this assump-

tion could be incorrect when the noise is temporally acute

or impulsive. The γ value makes the weighting nonlinear

so frames which deviate greatly from the mean are affected

more. In this study a value of 2.5 is used, but different values

have little effect on performance.

We want to emphasize that once the state model is cho-

sen, the estimated mask is based solely on the expectation

of which T-F units should have strong speech energy and the

relative energy of the frame. No assumptions about noise are

made and the individual T-F units of the data have no bearing

on the mask estimation process. Once the mask has been esti-

mated, we multiply it by the original signal and resynthesize

the waveform. Standard ASR features can then be calculated

from the enhanced waveform. The question of how to select

the correct state model at each frame during test time still re-

mains, which we will discuss in the next section.

4. EXPERIMENTAL SETUP

We use the HMM toolkit (HTK) [8] for our recognition sys-

tem. The acoustic model consists of intra-word triphones;

each triphone has three states, modeled by a mixture of 16

Guassians per state. A bigram language model is used dur-

ing decoding. The CMU dictionary was used for our pro-

nunciation dictionary. Our 39 dimensional feature vector is

comprised of mean and variance normalized PLP features, in-

cluding the delta and acceleration coefficients. While most

systems using binary masking for speech enhancement use

some type of missing feature recognition system [2, 9], we

have found this can be unnecessary as long as the features are

variance normalized [10].

All evaluations are performed on the Aurora4 corpus [11],

a 5000 word closed vocabulary task. This task is a modifica-

tion of the Wall Street Journal (WSJ0) database where noise

has been added to the clean speech recordings at various SNR.

To illustrate the mask estimation process, we assumed we

knew to which HMM state each frame of data corresponded.

Obviously, in practice this will not be known a priori. Instead

the correct state will have to be identified. While it seems
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Mask Type car babble restaurant street airport train avg

Baseline 27.3% 34.3% 36.7% 39.3% 35.0% 42.0% 35.8%

1-Best Estimate 25.2% 32.5% 35.5% 37.7% 33.4% 39.7% 34.0%

100-Best Estimate 23.9% 30.7% 34.3% 35.4% 33.8% 36.6% 32.5%

Oracle Models

IBM 17.6% 15.8% 15.4% 19.5% 16.2% 19.6% 17.4 %

Clean Speech Oracle 19.0% 20.1% 24.1% 20.5% 22.6% 21.6% 21.3%

100-Best Oracle 20.5% 25.6% 28.1% 29.9% 27.3% 32.1% 27.3%

Table 1. Word error rates for various mask types on the Aurora4 dataset. Word Error Rate for clean speech is 9.8%

infeasible to select the correct HMM state from all possible

choices, we can drastically reduce the number of competitors.

In this study we allow the baseline HMM to select a sub-

set of possible states at each frame. To do this we generate

an N-best list of size 100 using the unenhanced signal. Given

the N-best list we can extract a list of possible states, or mod-

els, at each time frame. Using a list of 100 utterances pro-

duces an average of 1.7 model candidates per frame. For this

pilot study, we use a simple method for choosing the state;

this method is based on the assumption that high energy T-F

units likely contain speech information and low energy units

contain little speech information. We generate a noise es-

timate by averaging the first few frames of each utterance.

Through spectral subtraction [12], we generate an estimate of

the clean speech. While this approach would provide a poor

mask estimation, we use it to identify strong and weak en-

ergy areas. Any T-F unit where the estimated SNR is greater

than 10dB is assumed to be speech dominant and less than

-10dB is assumed to be noise dominant. These units create a

guide, sometimes referred to as a conservative mask, to com-

pare candidate models against. We finally select the model

whose mask most closely matches the guide. The hope is that

if a model closely matches the labeling of the T-F units we are

confident in, then the labelings of the unknown regions will

be correct. Once a model is selected, we use its mask even

where it differs from the conservative mask.

5. RESULTS

Table 1 presents word error rates when using various binary

masks. The Baseline result uses no enhancement and provides

a floor for our performance, while the IBM result provides a

ceiling. First, we test the performance of our simple mask es-

timation method given perfect information. The clean speech

utterance is force aligned to identify the ideal state model for

each frame according to the ASR system. Clean Speech Ora-
cle shows the performance of the estimated mask when using

the ideal state. While performance is not as strong as the IBM,

it produces a 40.5% error reduction over the Baseline.

The Clean Speech Oracle result confirms this approach

to mask estimation can work. Next, we examine performance

when the ideal state is unknown. Using the output of the base-

line recognizer on noisy speech is the simplest method of se-

lecting the candidate state at each frame. Since this only pro-

duces one candidate per frame, it does not require a method

to select the correct model. While this approach, 1-Best Esti-
mate, should only reinforce the decisions made by the base-

line recognizer, it does produce a small reduction in error.

Finally, we use the 100-best list to generate candidate

states for each frame. Recall this requires our spectral sub-

traction based method to choose from the approximately 1.7

candidate states per frame. The 100-Best Estimate produces

a further reduction in error over the 1-Best Estimate result for

a total of 9% relative error reduction over the Baseline.

While the error reduction is significant over the baseline, a

gap still exists with the Clean Speech Oracle result. A natural

question is how much the simple model selection is impacting

performance: the 100-Best Oracle result replaces the model

selection with the model closest to the Clean Speech Oracle.

Performance is significantly better than our simple model se-

lection method. While the list of candidate states could also

be improved, the poor model selection would only be further

exacerbated by increasing the number of possible models.

While our main goal is improved ASR performance, we

also present results on a typical speech enhancement metric,

SNR improvement. For comparative purposes, in Table 2 we

list both the SNR improvements of our system and an MMSE-

based system from Hendriks et al. [3], a current state of the

art bottom-up system. Their system does not estimate a mask;

rather it estimates the noise spectrum in order to extract the

clean speech signal. The top-down approach performs favor-

ably compared to the bottom-up approach; since one could

envision using both techniques in a full system, the point here

is not to claim one technique is better than the other, rather,

this illustrates the power of top-down hypotheses, even ones

with significant errors, in enhancing speech. While the goal

of the Hendriks et al. system was not to improve ASR perfor-

mance, we note that using their estimated clean speech in an

ASR system did not improve performance over the Baseline.

6. CONCLUSIONS AND FUTURE WORK

We have outlined a simple ASR-driven top-down approach to

binary mask estimation for ASR. Our approach utilizes hy-
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Enhancement Technique car babble restaurant street airport train avg

Hendriks et al. [3] 8.3 2.8 2.3 6.7 2.4 5.7 4.7

100-Best Estimate 10.9 3.1 2.3 7.1 2.8 6.0 5.4

Table 2. SNR improvements for several speech enhancement methods on the Aurora4 dataset. Results on a subset of data, will

have final results in a few hours.

potheses generated by an HMM recognizer to identify T-F

units that are likely to be masked given the hypothesized sub-

phonetic unit. The approach is agnostic to the underlying in-

terference and is only concerned with the underlying speech.

Given perfect information, our approach can reduce word

error by 40% over an unenhanced baseline. Using a 100-

best list to generate hypotheses and a simple model selection

method, we could reduce word error by 9% over an unen-

hanced baseline. While state of the art methods would outper-

form the result presented here, this pilot study demonstrates

that top-down information can be useful and provides a sim-

ple framework for utilizing it.

Ultimately, we envision this approach to mask estimation

to be an iterative process. The baseline recognizer will first

generate hypotheses to be used for mask estimation. Then the

recognizer will generate a list of improved hypotheses using

the enhanced signal, similar to the idea presented in [13]. An

iterative process would not only allow the mask estimation

to improve recognition, but the recognition to improve mask

estimation. While most research has focused on speech en-

hancement improving ASR performance, we have shown the

reverse can be true; speech recognition, even when inaccu-

rate, can improve mask estimation or speech enhancement.

The focus of future work will be on improving the model

selection process, as it is the main bottleneck in the current

system. While we claim the current approach is agnostic

to the interference, we recognize that better model selection

methods will likely utilize more information about the under-

lying signal. Current conventional mask estimation methods

may even improve the model selection process.
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