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ABSTRACT

This paper proposes a multi-stream speech recognition system that
combines information from three complementary analysis meth-
ods in order to improve automatic speech recognition in highly
noisy and reverberant environments, as featured in the 2011 PAS-
CAL CHiME Challenge. We integrate word predictions by a bidi-
rectional Long Short-Term Memory recurrent neural network and
non-negative sparse classification (NSC) into a multi-stream Hid-
den Markov Model using convolutive non-negative matrix factor-
ization (NMF) for speech enhancement. Our results suggest that
NMF-based enhancement and NSC are complementary despite their
overlap in methodology, reaching up to 91.9 % average keyword ac-
curacy on the Challenge test set at signal-to-noise ratios from -6 to
9 dB—the best result reported so far on these data.
Index Terms: Non-Negative Matrix Factorization, Tandem Speech
Recognition

1. INTRODUCTION

In order to increase robustness of automatic speech recognition
(ASR) against varying background noise in reverberant environ-
ments, efforts have been devoted to signal enhancement in the front-
end on the one hand, and robust architectures of the back-end recog-
nizer on the other hand. In the last decade, the use of non-negative
matrix factorization (NMF) has led to impressive results both for
front-end signal enhancement and for hybrid or tandem ASR back-
ends. Treating speech enhancement as a source separation problem
(speech and noise), NMF-based techniques can be used to factorize
spectrograms into non-negative speech and noise dictionaries and
their non-negative activations. On the one hand, a clean speech sig-
nal can be estimated from the product of speech dictionaries and
their activations [1]. On the other hand, if the speech dictionar-
ies are appropriately labelled—e. g., by correspondence to words,
phonemes, or Hidden Markov Model (HMM) states—the activations
of their entries directly reveal content of the utterance if sparsity con-
straints are followed (non-negative sparse classification, NSC) [2].
This has been successfully exploited for exemplar-based techniques
in speech decoding [2, 3].

Recently, in the 2011 PASCAL CHiME Challenge [4], ASR sys-
tems were evaluated on noisy and reverberated voice command ut-
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terances of the Grid corpus [5], convolved with impulse responses
and overlaid with background noise—both measured in a real do-
mestic environment—at six SNRs from -6 to 9 dB. The HMM base-
line provided by the organizers indicates the challenge of the data
set, yielding 55.9 % average accuracy in recognizing 35 phoneti-
cally close keywords (letters and digits). Interestingly, both NMF
speech enhancement and exemplar-based recognition were success-
ful: Combining NMF-enhanced Mel frequency cepstral coefficients
(MFCCs) with word predictions by a bidirectional Long Short-Term
Memory (BLSTM) recurrent neural network (RNN) in a tandem ap-
proach yielded 87.3 % average accuracy [6]; 83.8 % accuracy was
obtained in a hybrid system mapping exemplar activations computed
by NMF to HMM state likelihoods [3].

In this paper, we propose to combine the NMF-based speech en-
hancement and sparse classification methods. Thus, we treat NSC
and NMF enhancement as separate systems despite their overlap
in methodology. A flow-chart of the ASR system is depicted in
Figure 1. Similar to [6], our fusion strategy uses a multi-stream
HMM to combine MFCCs with the word predictions of NSC and/or
a BLSTM-RNN. These predictions correspond to the discrete index
of the word with the highest activation, respectively. MFCCs as well
as word predictions can be computed from enhanced speech signals,
applying convolutive NMF as pre-processing. Through the multi-
stream HMM framework, systematic errors of the BLSTM-RNN as
well as NSC can be modelled by the HMMs in a conditional prob-
ability table (observed prediction given HMM state). Experiments
on automatic recognition of noisy and reverberated speech are car-
ried out in order to investigate the effect of combining NMF-based
speech enhancement and sparse classification methods.

Starting from this broad picture, we now flesh out the details of
the evaluation database and the proposed ASR system.

2. EVALUATION DATABASE

Our approaches for speech enhancement and ASR systems are eval-
uated on the official corpus provided for the 2011 PASCAL CHiME
Challenge [4]. The speaker-dependent ASR task is to recognize
voice commands of the form command–color–preposition–letter–
digit–adverb, e. g., “set white by U seven again” in a noisy living
room. For best comparability with the challenge results, we eval-
uate by the official challenge competition measure, which is key-
word accuracy, i. e., the recognition rate of letters (25 spoken En-
glish letters excluding ‘W’) and digits (0–9). The corpus contains
24 200 utterances of 34 speakers from the Grid corpus [5], subdi-
vided into a training (17 000 utterances), development (3 600), and
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Fig. 1: Block diagram of the proposed system: The central component is a multi-stream HMM fusing MFCCs with optional word predictions
by NSC (operating on Mel frequency bands, MFB) and/or the BLSTM-RNN (processing MFCC features). The MFCC as well as MFB feature
extraction can optionally by performed on an enhanced speech signal, applying convolutive NMF as pre-processing.

test set (3 600). Each set has been convolved with a different binau-
ral room impulse response (BRIR), corresponding to varying room
configurations (e. g., doors open/closed, curtains drawn/undrawn).
The development and test sets have been mixed with genuine bin-
aural recordings from a domestic environment obtained over a pe-
riod of several weeks. The noise is highly instationary due to abrupt
changes such as appliances being turned on/off, impact noises such
as banging doors, and interfering speakers [4]. The six signal-to-
noise ratios (SNRs) employed in the development and test set range
from 9 dB down to -6 dB in steps of 3 dB. Six hours of training noise
(disjoint from development and test) are provided for noise mod-
eling. More details of the domestic audio corpus and the mixing
process can be found in [4]. All these data are publicly available at
http://spandh.dcs.shef.ac.uk/projects/chime/PCC/datasets.html. For
the experiments reported in this paper, all signals were downmixed
to mono by averaging channels.

3. SPEECH ENHANCEMENT BY CONVOLUTIVE NMF

As a preprocessing step in the front-end, our multi-stream archi-
tecture uses speech enhancement by convolutive non-negative ma-
trix factorization as in [6]. We assume that the observed magni-
tude spectrogram V of a noisy and reverberated speech signal can
be approximated as the sum Λ(s) + Λ(n) of (reverberated) speech
and noise spectrograms. In turn, both of these are represented by
non-negative convolutive bases (dictionaries) spanning P frames,
denoted by W(s)(p) and W(n)(p), p = 0, . . . , P − 1, and their

non-negative activations H(s) and H(n):

V ≈ Λ(s)+Λ(n) =

P−1∑
p=0

W(s)(p)
p→
H(s)+

P−1∑
p=0

W(n)(p)
p→
H(n). (1)

Here → denotes a ‘right shift’ of matrix columns, filling with zeros
from the left. We estimate both, W(s)(p) and W(n)(p) from train-
ing data as in [6]: For each of the 51 words and each of the 34 speak-
ers, the corresponding segments of the noise-free CHiME training
utterances are extracted according to an HMM forced alignment and
concatenated into a single spectrogram which is reduced to a dic-
tionary atom by convolutive NMF using the Kullback-Leibler (KL)
divergence as cost function. From the 51 characteristic word spec-
trograms per speaker, speaker-dependent dictionaries are formed. A
general noise dictionary is obtained by sub-sampling the 4 hours of
training noise provided with the CHiME corpus and applying con-
volutive NMF with 51 components. In our experiments, we use
P = 13, 64 ms frame size and 16 ms frame shift, and hence longer
windows than those commonly used in speech recognition. This has
been proven beneficial for the quality of NMF-enhanced signals [1].

Speech enhancement is performed by jointly determining a so-
lution for H(s) and H(n) using NMF with fixed dictionaries learned

from training data. The estimated clean speech spectrogram V̂(s) is
then obtained by filtering the observed spectrogram V (⊗ denotes
the elementwise matrix product):

V̂(s) =
Λ(s)

Λ(s) +Λ(n)
⊗V. (2)

From V̂(s) we resynthesize a time domain signal for further process-
ing in the multi-stream recognizer.

4. WORD PREDICTION BY SPARSE NMF

While long context spectral factorization has been used successfully
for separation and enhancement tasks [1, 6], its results can also be
exploited more directly in speech recognition. By inspecting the
activation weights H of dictionary atoms as determined by sparse
NMF and knowing the identity of each atom, we can find out the
sources, which most likely contribute to the mixed observation. In
the case of speech, this identity information bears the phonetic con-
tent of atoms, thus allowing phone and word classification based on
the activation weights without spectral reconstruction or waveform
synthesis. In this approach, the atoms correspond to sampled spec-
trogram segments instead of learned convolutive patterns as in our
speech enhancement strategy, and are consequently referred to as
exemplars. Due to its inherent capability of capturing speech pat-
terns from noisy mixtures, high robustness has been achieved in low
SNRs using NSC [2, 3].

In NSC, it is crucial that different phones can be told apart al-
ready during the factorization. Therefore we use the same tempo-
ral resolution as in common MFCC recognition—25 ms frame size
and 10 ms shift. As features, we use 26 Mel scale spectral mag-
nitude bands, again derived from the number commonly used for
calculating MFCCs. This resolution is believed to capture most of
the information needed for direct classification, while keeping the
computational complexity manageable. Both convolutive NMF (as
for enhancement in this study) which factorizes the whole utterance
jointly, and independent factorization of each window have been
shown to enable modeling temporal context within a window [7]. In
this work we use exemplar windows spanning 20 frames, and inde-
pendent factorization of each window, based on our earlier results on
CHiME data [3]. The other factorization options, including weight-
ing of features, sparsity penalty values and the number of iterations
were exactly set as in [3]. For the sparse classification task, 5 000
speaker-dependent speech exemplars and 5 000 noise exemplars are
extracted from the training data. This combined speech-noise basis
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is kept fixed during NMF iterations. After receiving the sparse acti-
vation weight vector for each window, the weights and the predeter-
mined label sequences encoding the phonetic information of speech
exemplars are used to construct a state likelihood matrix for the ob-
servation. The details of this NSC setup and its standalone recogni-
tion results in a hybrid ASR system are given in [3]. In this work,
we determine the most likely word identity nt for each frame t of
the observation by summing state likelihoods corresponding to each
word. The resulting sequence of word predictions is then used as a
feature stream in the tandem decoder (cf. the next section).

5. MULTI-STREAM SPEECH RECOGNITION

The back-end of the proposed ASR system is based on a multi-
stream HMM recognizer recently proposed as an efficient method to
integrate Long Short-Term Memory (LSTM) modeling into speech
decoding [8]. Long Short-Term Memory networks were introduced
in [9] and can be seen as an extension of conventional recurrent neu-
ral networks that enables the modeling of long-range temporal con-
text for improved sequence labeling. They are able to store informa-
tion in linear memory cells over a longer period of time and can learn
the optimal amount of contextual information relevant for the classi-
fication task. An LSTM hidden layer is composed of multiple recur-
rently connected subnets (so-called memory blocks). Every memory
block consists of self-connected memory cells and three multiplica-
tive gate units (input, output, and forget gates). Further details on the
LSTM principle can be found in [10]. In the following, we will use
bidirectional LSTM networks (BLSTM) which have access to both,
past and future context via forward and backward processing of the
speech sequence.

Employing a BLSTM network with input units corresponding to
MFCC features and one output unit per word, we generate a discrete
word prediction feature bt for each time step t that is equivalent to
the index of the output unit with maximum activation—in analogy to
the NSC word prediction nt. Thus, in every time frame t the multi-
stream HMM has access to up to three independent observations:
the MFCC features xt, the BLSTM word prediction bt and the NSC
word prediction nt. xt can be calculated from either the original
noisy signal or from the one enhanced by convolutive NMF. With
yt being the concatenation of xt, bt and nt and the variables λ1, λ2

and λ3 denoting the stream weights of the MFCC, BLSTM and NSC
streams, respectively, the multi-stream HMM emission probability
in a certain state st can be written as

p(yt|st) =[
M∑

m=1

cstmN (xt;μμstm
,Σstm)

]λ1

× p(bt|st)λ2 × p(nt|st)λ3 .

(3)

Precisely, the continuous MFCC observations are modeled via a
mixture of M Gaussians per state while the BLSTM and NSC pre-
dictions are modeled using conditional probability tables (CPTs)
p(bt|st) and p(nt|st). The index m denotes the mixture compo-
nent, cstm is the weight of the m’th Gaussian associated with state
st, and N (·;μμ,Σ) represents a multivariate Gaussian distribution
with mean vector μμ and covariance matrix Σ. λi > 0 indicates
presence of a stream.

6. EXPERIMENTS

We evaluate our system against the baseline provided by the 2011
CHiME Challenge [4] organizers. As basic techniques for increased

robustness, we use mean-only maximum-a-posteriori (MAP) adap-
tation to estimate speaker-dependent GMs modeling the MFCC
stream, and multi-condition training (MCT) for both the MFCC
GMs and the weights within the BLSTM layers. The MCT training
data is generated by mixing all 17 000 training utterances with ran-
dom segments of the training noise in the CHiME corpus. Thus, the
complete MCT (clean and noisy) training data consists of 34 000 ut-
terances. Note that we intentionally do not scale the noise or speech
levels to obtain specific SNRs for training, as we assume the SNR
conditions in the test data to be unknown. Then, we evaluate the
effect of integrating either or both the BLSTM and NSC word pre-
diction streams, and for each case the impact of additional NMF
enhancement.

The HMM topologies of the proposed system correspond to the
baseline [4]. We employ left-to-right word-level Hidden Markov
Models (HMMs) with 4–10 states and seven Gaussian mixtures
(GM) per state (M = 7). In this study, we use 39-dimensional
standard cepstral mean normalized MFCC features as in the base-
line. The BLSTM network applied for generating the estimates bt
for the multi-stream system is trained on framewise word targets ob-
tained via HMM-based forced alignment of the clean training set.
Similar to the network configuration used in [8], the BLSTM net-
work consists of three hidden LSTM layers (per input direction) with
a size of 78, 150, and 51 hidden units, respectively. Each LSTM
memory block contains one memory cell. The remaining training
configurations are the same as in [8]. To create speaker-dependent
networks, we adapt the BLSTM word predictor by performing ad-
ditional training epochs using only the training utterances of the re-
spective speaker. For each speaker, a network is generated by ini-
tializing with the weights of the speaker independent networks and
training until no further improvement on the development data of
the respective speaker can be observed. By using speaker-dependent
BLSTMs, performance on the CHiME test set could be improved
by about 3 % absolute with respect to our previous study [6]. The
stream weights are optimized for the MFCC-BLSTM case as in [6]
and are 1 or 0 (present / absent) otherwise.

7. RESULTS

Experimental results on the development and test set of the CHiME
corpus are shown in Table 1. A noticeable improvement of almost
19 % absolute in keyword accuracy (on test) is gained by using MCT
and mean-only MAP adaptation for the GM modeling of the MFCC
stream, as detailed in [6]. When using only the MFCC stream in a
MAP-adapted HMM with MCT, NMF enhancement delivers a gain
of about 10 % absolute as reported in [6]. Still, this improvement
is mostly visible for lower SNRs, while at 9 dB SNR there is a
slight degradation. Considering a noise-robust back-end by addi-
tional BLSTM modeling without any front-end enhancement yields
86.3 % average accuracy; while the improvement by the BLSTM is
slightly smaller than the one by NMF enhancement at low SNRs, we
now observe significant gains even in ‘almost clean’ speech (4.5 %
absolute at 9 dB, p < .001 according to a z-test). Using NMF en-
hancement in combination with BLSTM modeling gives an average
accuracy of 90.5 %, again boosting the performance at low SNRs
while inducing a slight degradation at 9 dB SNR: It appears that at
9 dB the BLSTM alone delivers predictions so robust that NMF sep-
aration artifacts outweigh the benefit of additional noise suppression.

Modeling the NSC word prediction in analogy to the BLSTM in
a double-stream HMM, we obtain 83.7 % average accuracy without
prior speech enhancement. Most notably, this accuracy is boosted to
87.4 % when using NMF enhancement in addition to NSC, indicat-
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Table 1: Keyword recognition accuracies [%] on the CHiME corpus using multi-stream HMMs with MFCC, BLSTM, and/or non-negative
sparse classification (NSC) feature streams. –: not present (λi = 0), �: present, �+: computed from NMF enhanced signal.

Devel Test Test
Streams Mean SNR [dB] Mean

MFCC BLSTM NSC -6 -3 0 3 6 9
CHiME Challenge Baseline

� – – 56.3 30.3 35.4 49.5 62.9 75.0 82.4 55.9 [4]
Speaker adaptation / multi-condition training

� – – 74.6 54.5 61.1 72.8 81.7 86.8 91.3 74.7 [6]
�+ – – 82.7 75.6 79.2 84.1 87.7 88.3 90.6 84.2 [6]
� � – 86.5 72.8 79.0 85.4 90.8 93.8 95.8 86.3
�+ �+ – 90.1 82.9 87.2 90.3 93.7 93.9 94.8 90.5
� – � 85.3 67.2 75.1 85.0 89.8 92.0 93.4 83.7
�+ – � 89.3 79.1 82.8 88.7 91.2 92.7 93.5 88.0
�+ – �+ 88.2 80.4 83.2 87.5 89.9 90.3 92.8 87.4
� � � 91.0 76.9 82.9 88.8 92.3 95.3 96.4 88.8
�+ �+ � 92.6 84.8 88.3 92.1 93.9 95.7 96.4 91.9
�+ �+ �+ 92.1 84.5 87.9 91.0 93.5 95.0 95.6 91.3

ing that our NMF and NSC approaches both contribute to robustness:
We argue that although NMF is the basis of both, the input represen-
tation and dictionaries are considerably different in our approach (cf.
Sections 3 and 4)—in fact, NSC was shown to produce better recog-
nition of noisy speech than recognition of enhanced signals recon-
structed from the same sparse representation [2]. Interestingly, we
observe even higher performance (88.0 %) when using enhancement
only for the MFCC stream: Enhancement degrades performance of
the MFCC-NSC model starting from 0 dB SNR. This can probably
be attributed to a mismatch of the NSC dictionaries, which are built
from unprocessed speech and noise data, and the characteristics of
the separated signal with separation artifacts and remaining interfer-
ences.

Finally, the overall best results are obtained by a triple-stream
HMM fusing the enhanced MFCC stream with BLSTM and NSC
word predictions, reaching 91.9 % keyword accuracy on the test set.
Again, using NMF enhancement prior to NSC does not further im-
prove performance; yet again, without NMF enhancement at all, per-
formance is considerably lower (88.8 %). Notably, it can be seen that
the triple-stream approach significantly (p < .005) outperforms both
double-stream approaches, providing evidence for complementarity
between the BLSTM and NSC streams.

8. CONCLUSIONS

We have successfully integrated non-negative sparse classification in
a multi-stream BLSTM-HMM decoder using NMF speech enhance-
ment, resulting in 91.9 % average keyword accuracy on the CHiME
data set containing highly non-stationary noise at SNRs from -6 to
9 dB. This is the best result reported so far on these data. Our results
suggest that NMF enhancement and recognition are complementary;
it remains to investigate whether this is due to different parameter-
izations (features, dictionaries) or fundamental methodological dif-
ferences. Furthermore, since the triple-stream approach delivers best
results, we argue that robustness by flexible context modeling in the
BLSTM is complementary to explicit noise modeling in NSC. Fu-
ture work should address better integration of source separation and
decoding by adapting the GMMs, the BLSTM as well as the NSC
dictionaries to handle separated signals, and generalize the triple-
stream approach to large vocabulary ASR.
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