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ABSTRACT1

Eigenvoice and vector Taylor series (VTS) are good models for 
speaker differences and environmental variations separately. 
However, speaker and environmental variation always coexist in 
real-world speech. In this paper, we propose to combine 
eigenvoice and VTS. Specifically, we introduce eigenvoice 
speaker modeling for the clean speech into VTS’s nonlinear 
mismatch function. In contrast, the standard VTS uses speaker-
independent modeling to represent the clean speech, regardless of 
speaker differences. The eigenvoice coefficients and the noise 
model parameters are jointly estimated in the new approach. 
Experimental results on the Aurora2 task show the improved 
performances of combining eigenvoice and VTS and demonstrate 
its ability for speaker and noise factorization. 

Index Terms— robust speech recognition, vector Taylor 
series, speaker adaptation, eigenvoice

1. INTRODUCTION 

The performances of speech recognition systems have been 
improved greatly, yet the robustness to various random 
interferences in speech signals still remains a challenging problem. 
Speaker differences and environmental variations are two major 
random factors in speech signals, which interfere in speech 
recognition.  

Model-based approaches have been shown to be promising to 
deal with these two random factors separately. Regarding the 
robustness to speaker differences, speaker adaptation techniques, 
such as MLLR [1] and eigenvoice [2, 3], can adapt acoustic model 
to a new speaker. It is worthwhile to comment on these two 
approaches. We can find physical interpretations for eigenvoices, 
while it is hard to do so for MLLR transformation matrices. The 
advantage of the eigenvoice approach is that the a priori 
information about the inter-speaker variation is explicitly modeled 
and utilized to derive constraints for rapid speaker adaptation. The 
benefit of the MLLR approach is that it is flexible and can be used 
as a general adaptation method. Although this is practically useful, 
speaker differences and environmental variations are treated in a 
confused way. Regarding the robustness to environmental 
variations, model-based approaches based on vector Taylor series 
(VTS) expansion of the nonlinear mismatch function in the 
cepstral domain can effectively compensate for additive and 
convolutional distortions [4, 5, 6]. 

1 This work is supported by National Natural Science Foundation 
of China (61075020) and China 863 (2006AA01Z149). 

Note that speaker and environmental variation always coexist 
in real-world speech. There are several studies that consider joint 
handling of these two random factors. Acoustic factorization [7, 8] 
uses MLLR as speaker transform and cluster adaptive training as 
noise transform, both of which are linear transforms. This is not 
optimal if considering the nonlinear nature of the mismatch 
function relating the clean speech and the noisy speech. In a recent 
work [9], two combination schemes of MLLR and VTS are 
considered. One combination called “VTS+MLLR” conducts 
MLLR on top of the standard VTS. Using VTS is physically clear 
for noise compensation, but we can hardly interpret the MLLR 
used in this scheme as modeling the speaker variation. The “Joint” 
scheme replaces the clean speech model used in the VTS with a 
speaker-adapted clean speech model by MLLR transform. It is 
discovered that the speaker’s MLLR transform estimated from the 
noisy speech using the “Joint” scheme still models some of the 
limitations of the VTS mismatch function [9], i.e. carries 
information about current noise characteristics. This hurts the 
performance when the estimated speaker transform from one noisy 
condition is used to recognize the speech from the same speaker 
under clean conditions. 

In this paper, we consider how to do better speaker and noise 
factorization. Speaker and environmental variations have different 
characteristics. For speaker variation, the a priori information 
could be obtained by analyzing the training data with various 
speakers. The correlation analysis of the speaker supervectors 
leads to the eigenvoices, along which the speaker variation are 
significant [2, 3]. Using eigenvoice is statistically clear for speaker 
variation modeling. On the other hand, noise is hard to be modeled 
a priori. It is beneficial to perform adaptive noise compensation 
using online noise estimation based on the physical model relating 
the clean speech and the noisy speech – the mismatch function. 
With the above analysis, we propose to combine eigenvoice 
speaker modeling and VTS-based environment compensation so as 
to do better speaker and noise factorization. Intuitively, compared 
to MLLR, the eigenvoice speaker modeling puts strong restrictions 
on the speaker model; thus can help to better distinguish speaker 
variability from environment distortions.  

Experiments are carried out using the Aurora2 database. First, 
the standard experimental setup of Aurora2 is used. Improved 
performances over the baseline VTS are obtained by combining 
eigenvoice and VTS. Next, we design an experiment where the 
estimated speaker model from a noisy utterance is used to 
recognize the corresponding clean utterance. The obtained 
performance is close to that of using the estimated speaker model 
from the clean utterance itself to do the recognition. This is a 
demonstration of speaker and noise factorization. 

This paper is organized as follows. In Section 2, we review 
eigenvoice speaker modeling and VTS noise adaptation method. In 
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Section 3, we present the proposed joint adaptation scheme which 
combines eigenvoice and VTS. Section 4 gives the experimental 
results on the Aurora2 database. Finally, the conclusions are made 
in Section 5. 

2. REVIEW OF EIGENVOICE SPEAKER MODELING 
AND VTS-BASED NOISE COMPENSATION 

In this section, we review two adaptation methods, namely 
eigenvoice and VTS. Both of them rely heavily on prior 
knowledge, either obtained from statistical analysis of training data 
or governed by physical modeling of the signal transmission 
process.  

2.1. Eigenvoice 

In eigenvoice speaker modeling, the HMM’s Gaussian means in 
any speaker-dependent (SD) model are concatenated to form a 
speaker supervector. Once the supervector’s covariance matrix is 
estimated from the training data, we apply principle component 
analysis (PCA) to obtain the dominant eigenvectors, namely 
eigenvoices. The speaker supervector x  (as the clean speech 
model for a speaker) is assumed to be a weighted linear 
combination of the speaker average model 0e  and R eigenvoices 

re  (r=1, 2, …, R) : 
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The maximum likelihood estimation of the eigenvoice 
coefficients 1 2, ,..., T

Rw w w w  is derived using the EM algorithm. 

The auxiliary function of the parameters { }w  is 
expressed as: 
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where we use the subscript j,k of 0e , re  to denote the elements 
corresponding to state j and component k; ( )jk t  is the posteriori 

probability of state j and component k at frame t. , ,,x jk x jk  are 
the Gaussian mean and covariance matrix of the HMM’s state 
output distribution for state j and component k. Solving ˆ/ 0Q

gives the linear equations to estimate the eigenvoice coefficients 
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2.2. VTS 

Noise is hard to be modeled a priori. However, we can exploit the 
physical model relating the clean speech and the noisy speech. 
Consider the effect of the additive noise n  and the convolutional 
distortion h  on the clean speech x . In the mel-cepstral domain, 
we have the following nolinear mismatch function relating the 
clean speech and the noisy speech [5]: 

1ln 1 exp ( , , )y x h C C n x h g x n h             (5) 

where C  is the DCT matrix. Here x  is modeled by the standard 
acoustic HMM model with Gaussian means ,x jk and covariance 

matrices ,x jk . For each utterance, n  is assumed to be Gaussian 

distributed as ,n nN , and hh  is an unknown constant.  
There are two issues in order to apply the above model to noise 
compensation. First, given a clean acoustic model , ,,x jk x jk

and an estimate of the noise model parameters , ,n n h ,

we need to obtain the noisy speech parameters , ,,y jk y jk  for 

each Gaussian component of the acoustic HMM. Second, given the 
noisy speech, the noise model parameters  need to be estimated. 

For the first issue, the basic idea is to approximate the 
nonlinear model of Equ. (5) by the first-order VTS expansion 
around ,n h  and ,x jk  for each Gaussian component : 
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Jacobian matrices. This yields the following distribution of the 
noisy speech y [5]2:
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For the second issue, the noise model parameters  are re-
estimated using the EM algorithm. The auxiliary function of the 
parameters , ,n n h  is expressed as: 

, ,
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t j k
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Since the derivative of Q  is a non-linear function of ˆ , we 
approximate the root of the derivative through iterative 
refinements. Note that the nonlinear relationship between ,ˆ y jk

and ˆ , as shown in Equ. (7), can again be approximated using the 
first-order VTS expansion around the old parameters :

, , , ,ˆ ˆ ˆ( ) ( )y jk y jk n jk n n h jk h hG G            (9) 

where , ,,n jk h jkG G  are the Jacobian matrices evaluated at the old 

parameter . Based on this approximation, solving ˆ/ 0nQ

gives the following re-estimation formula for n :
1
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where we define the following sufficient statistics 
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The derivation of the re-estimation formula for h  is derived in [5]. 
The re-estimation formula for n  based on Gauss-Newton method 
is derived in [6]. 

2 The compensation for derivative features is slightly different and 
will be omitted in the following of this paper to save space. 
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3. COMBINING EIGENVOICE AND VTS 

Eigenvoice and VTS are good models for speaker differences and 
environmental variations separately. However, speaker and 
environmental variation always coexist in real-world speech. It is 
beneficial to combine eigenvoice and VTS. Specifically, we 
introduce eigenvoice speaker modeling for the clean speech into 
VTS’s nonlinear mismatch function. In contrast, the standard VTS 
uses a speaker-independent HMM to represent the clean speech. 

3.1. Parameter estimation for joint adaptation 

The parameters to be estimated in the joint adaptation scheme, 
( ) ( ) ( ), , , 1, , ;  u u u
n n h u U w , consists of two parts: the 

eigenvoice coefficients w  for the target speaker and the noise 
model parameters ( ) ( ) ( ), , , 1, ,u u u

n n h u U  for a total of U

utterances from that speaker. Each utterance u has its own noise 
parameters (indexed with the superscript u). Introducing 
eigenvoice speaker modeling for the clean speech into VTS’s 
nonlinear mismatch function yields the following distribution for 
the u-th noisy speech y :
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This is obtained by plugging Equ. (1) into Equ. (7) and noting 
that the covariance matrix ,x jk  for the clean speech is still 
modeled globally (i.e. utterance-independent). 

The auxiliary function of the parameters  is expressed as: 
( ) ( ) ( )

, ,
, ,
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where ( ) ( )
, ,

ˆˆ ,u u
y jk y jk

 are the compensated mean and covariance matrix 
for the u-th noisy utterance y  as in Equ. (13). A block coordinate 
ascent strategy is used to optimize w  and  iteratively.  is 
optimized while keeping w  fixed, and vice versa. 

Estimating the noise model parameters  while keeping w
fixed is a simple extension of the VTS-based noise estimation as 
described in Section 2.2. The only difference is that in noise 
estimation, we use the speaker-dependent clean speech mean x

as in Equ. (1), instead of using the speaker-independent mean. 
The estimation of the speaker’s eigenvoice coefficients w

given the current noise estimation ˆ  is derived as follows. The 
key is that the nonlinear relationship between ( )

,ˆ u
y jk  and ŵ , as 

shown in Equ. (13), can again be approximated using the first-
order VTS expansion around the old parameter w :
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Based on this approximation, we can compute ˆ/Q w  as 
follows:
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Solving ˆ/ 0Q w  gives the linear equations to estimate ŵ :
ˆAw b    (17) 
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3.2. The proposed joint adaptation scheme 

The implementation of the above iterative parameter estimation is 
described step by step in the following. 
1. For each utterance, initialize the noise model mean and 

variance ( ) ( ),u u
n n  using the first and last several frames that 

are assumed to be speech-free, and set ( ) 0u
h .

2. Update the noisy speech model according to Equ. (13) with w
being initialized as 0, and do one pass recognition. 

3. Based on current estimates of noise model parameters and 
eigenvoice coefficients, re-estimate the eigenvoice coefficients 
according to Equ. (18) and update the speaker adapted mean. 

4. Based on current speaker adapted mean and noise model 
parameters, re-estimate the noise model parameters according 
to Equ. (10) and update the noisy speech model according to 
Equ. (13).  
After step 3, the speaker-dependent clean speech model is 

estimated. After step 4, the noisy speech model is estimated. Steps 
3 and 4 can be iterated for several times. 

4. EXPERIMENTAL RESULTS 

The proposed adaptation scheme is evaluated on the standard 
Aurora2 task of recognizing digit strings in noisy environment [10]. 
Three test sets called SetA, SetB and SetC are designed to evaluate 
recognition accuracies under different noise conditions. SetA and 
SetB each contain 4 types of additive noise. SetC contains 2 types 
of additive noise as well as channel distortion. The average 
recognition accuracy is calculated over 5 SNR levels between 
0~20dB. 

The clean training set, containing 8440 utterances from 110 
speakers, is used to train the speaker independent (SI) model and 
eigenvoices. The feature is 39-dimensional MFCCs computed 
based on the power spectrum with the 0-th cepstral coefficient. 
The HMM configuration is consistent with the standard system 
described in [10]. The baseline system using speaker independent 
model achieves the average accuracy of 59.46%.  

To obtain eigenvoices with insufficient data from each 
training speaker, we use supervised MLLR transforms to generate 
speaker-adapted models. Then PCA is performed to obtain the first 
9 eigenvoices with the largest eigenvalues. To evaluate eigenvoice 
adaptation for clean speech, we perform unsupervised adaptation 
for each utterance in the clean test set, increasing the number of 
eigenvoice from 0 (i.e. using SI model) to 9. It can be seen from 
Table 1 that eigenvoice adaptation can further improve recognition 
accuracy even in the per-utterance mode, which means limited 
amount of adaptation data.

Various noise compensation methods are conducted to 
recognize in the noisy conditions, which are all applied in the per-
utterance mode. The results are shown in Table 2. First, we 
initialize the mean and covariance of the additive noise by 
averaging the first and last 20 frames of an utterance. Using this 
initialized noise estimate, the average recognition accuracy is 
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88.04%, denoted as “VTS Init”. Based on this initial hypothesis, 
the standard VTS, which uses the SI clean speech model, is 
performed to re-estimate the noise parameters for one iteration. 
This results in the accuracy of 90.23%, denoted as “VTS with SI 
model”. Also based on the initial hypothesis produced by “VTS 
Init”, the eigenvoice coefficients and noise parameters are jointly 
estimated for one iteration. It is shown in Fig. 1 how the average 
accuracies change as we use different number of eigenvoices in the 
joint adaptation scheme. As the number of eigenvoice increases to 
5 and more, the performances of the joint scheme degrade due to 
the unreliable estimation of the eigenvoice ceofficients using 
limited adaptation data. The best average accuracy of 90.78% is 
obtained using 4 eigenvoices, as shown in the last row of Table 2. 
This is a significant improvement over the accuracy of 90.23% 
obtained by the standard VTS. The benefit of combining 
eigenvoice and VTS for robust speech recognition is clear. 

In addition to this overall recognition accuracy evaluation, we 
design another experiment, again in the per-utterance mode, to 
investigate whether the clean speaker model estimated under noisy 
condition is affected by environmental factors. In this experiment, 
the clean speaker model estimated from the noisy utterance under 
the “VTS with 4 eigenvoices” scheme is used to recognize the 
corresponding clean utterance. This is compared to the standard 
unsupervised eigenvoice adaptation, which estimates the clean 
speaker model from the clean utterance itself (also using 4 
eigenvoices) and do the recognition. It is can be seen from Table 3 
that the performances of using the clean speaker models estimated 
from noisy data (across various SNRs from 0dB to 20 dB) are very 
close to that of using the clean speaker models estimated from 
clean data. This is a good demonstration of speaker and noise 
factorization. 

5. CONCLUSION 
Eigenvoice and VTS are good models for speaker differences and 
environmental variations separately. However, speaker and 
environmental variation always coexist in real-world speech. In 
this paper, we propose to combine eigenvoice and VTS. The 
eigenvoice coefficients and the noise model parameters are jointly 
estimated. Experimental results on the Aurora2 task show the 
improved performances of combining eigenvoice and VTS in the 
per-utterance mode that means limited amount of adaptation data 
and demonstrate its ability for speaker and noise factorization. 
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Table 1: Recognition accuracies for per-utterance unsupervised 
eigenvoice adaptation under the clean condition 

Eigenvoice Num SI 1 2 3 4 

Clean Acc (%) 99.00 98.98 99.10 99.10 99.10

Eigenvoice Num 5 6 7 8 9 

Clean Acc (%) 99.11 99.09 99.08 99.10 99.09

Table 2: Average recognition accuracies for per-utterance 
unsupervised adaptation under noisy conditions by various schemes

Scheme SetA SetB SetC Avg. Acc.

Baseline 59.33 56.19 66.26 59.46 
VTS Init 87.65 88.38 88.11 88.04 

VTS with SI model 90.03 90.39 90.30 90.23 
VTS with 4 
eigenvoices 90.58 91.15 90.43 90.78 

Fig. 1: Average recognition accuracies for per-utterance 
unsupervised adaptation under noisy conditions by various schemes

Table 3: Per-utterance unsupervised adaptation experimental results 
for recognizing the clean utterance, using the clean speaker model 

estimated from the noisy utterance under the “VTS with 4 
eigenvoices” scheme. The “clean” represents the standard 

unsupervised eigenvoice adaptation scheme (i.e. using the clean 
speaker model estimated from the clean utterance itself) 

SNR clean 20dB 15dB 10dB 5dB 0dB 
Acc (%) 99.10 99.10 99.11 99.12 99.08 99.00
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