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ABSTRACT

In this paper, a modified a priori SNR estimator is proposed for
speech enhancement. The well-known decision-directed (DD) ap-
proach is modified by matching each gain function with the noisy
speech spectrum at current frame rather than the previous one. The
proposed algorithm eliminates the speech transient distortion and re-
duces the impact from the choice of the gain function towards the
level of smoothing in the SNR estimate. An objective evaluation
metric is employed to measure the trade-off between musical noise,
noise reduction and speech distortion. Performance is evaluated and
compared between a modified sigmoid gain function, the state-of-
the-art log-spectral amplitude estimator and the Wiener filter. Sim-
ulation results show that the modified DD approach performs better
in terms of the trade-off evaluation.

Index Terms— Speech enhancement, decision-directed ap-
proach, SNR estimation, musical noise, objective evaluation

1. INTRODUCTION

Single channel speech enhancement is widely used in mobile phones
or listening devices. Among the vast amount of short-time spectral-
domain noise reduction algorithms published in literature, the best
known methods are the Wiener filter and the MMSE log-spectral am-
plitude (LSA) estimator [1]. The LSA approach is usually preferred
against Wiener filtering as it can reduce unnatural artifacts known as
musical noise.

A dominant point behind the reduction of musical noise by
the LSA approach is the decision-directed (DD) approach for the
a priori SNR estimation [2]. The DD approach performs a linear
combination of two components: one being an estimate of previ-
ous a priori SNR and another being the maximum-likelihood (ML)
SNR estimate. By applying a weighting factor closed to unity to
the past a priori SNR estimate, the DD approach corresponds to a
highly smoothed version of the a posteriori SNR, which reduces the
musical noise. The drawback of reducing the variance in the a priori
SNR estimate is that it cannot react quickly to abrupt changes in the
instantaneous SNR. This bias leads to a performance degradation in
speech enhancement schemes due to the speech transient distortion.

In addition to the speech transient distortion, a large degree of
smoothing by the DD approach also yields two undesired effects:
a reduced noise reduction and a reverberation effect [3]. Although
the level of smoothing can be controlled in DD approach, it yields
a trade-off between musical noise, noise reduction and speech dis-
tortion. Furthermore, such smoothing effect also depends highly on
the choice of the gain function. For instance, not much smoothing
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was observed for Wiener filter compared to the LSA approach [3].
Accordingly, the LSA approach has less musical noise whilst the
Wiener filter is reported to provide higher noise suppression.

In this paper, a modified a priori SNR estimator is proposed to
reduce both the speech transient distortion and the effect of different
gain functions towards the level of smoothing of the SNR estimate.
To highlight this, a comparison is performed between the Wiener
filter, the LSA approach and a sigmoid function. The sigmoid func-
tion has been developed as a spectral weighting gain function as it
has several parameters that can be adjusted to achieve a balanced
trade-off between noise reduction and speech distortion [4]. In this
work, the sigmoid function is modified to map with the a priori SNR
estimate. An analysis towards the trade-off between musical noise,
noise reduction and speech distortion is performed by using an ob-
jective evaluation metric.

The remainder of this paper is organized as follows. Section 2
gives a system overview. Section 3 shows the proposed SNR esti-
mate. Section 4 outlines the objective evaluation metric and Section
5 presents the results. Section 6 concludes the paper.

2. SYSTEM OVERVIEW

Let the noisy signal in discrete-time domain be expressed as y(n) =
x(n) + v(n), where x(n) is the clean speech signal and v(n) is the
uncorrelated additive noise. By using the short-time Fourier trans-
form (STFT), the spectral coefficients Y (k,m) can be obtained by

Y (k,m) =
N∑

n=1

y (mR+ n)w (n) exp

(−j2πkn

N

)
(1)

where k is the frequency bin index, m is the frame index, R is
the oversampling point and w(n) is a window function. The clean

speech spectrum estimate X̂(k,m) is then obtained by

X̂(k,m) = G(k,m)Y (k,m) (2)

where G(k,m) is a non-linear gain function mapped with the
a priori SNR ξ(k,m) and/or the a posteriori SNR γ(k,m), defined
as

ξ(k,m) =
E
{|X(k,m)|2}

E {|V (k,m)|2} =
λx(k,m)

λv(k,m)
(3)

γ(k,m) =
|Y (k,m)|2

E {|V (k,m)|2} =
|Y (k,m)|2
λv(k,m)

(4)

where λx(k,m) and λv(k,m) denote clean speech power spectral
density (PSD) and noise PSD, respectively.

The gain function can be derived from MMSE optimization
criteria. One of those is the Wiener filter, which minimizes the
expected value E{|X(k,m) − X̂(k,m)|2}. Another widely used
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algorithm is the LSA estimator, which is obtained by minimizing

E{[log(|X(k,m)|) − log(|X̂(k,m)|)]2} [1]. The resulting gain
functions for the Wiener filter and the LSA approach are obtained
respectively as

GWiener(k,m) =
ξ(k,m)

1 + ξ(k,m)
(5)

and

GLSA(k,m) = min

(
ς,

ξ(k,m)

1 + ξ(k,m)

{
1

2

∫ ∞

ν(k,m)

e−t

t
dt

})
(6)

where ς = 10 denotes the upper bound for the LSA estimator and

ν(k,m) = γ(k,m) ξ(k,m)
1+ξ(k,m)

.

As an alternative gain function to the MMSE approaches, a sig-
moid function mapped with the a posteriori SNR has been proposed
in [4]. Here, the sigmoid function is modified to map with the
a priori SNR. The modification is done by multiplying the original
logistic function in [4] with a hyperbolic tangent function, as

GMSIG(k,m) = 1−exp[−a1ξ(k,m)]
1+exp[−a1ξ(k,m)]

× 1
1+exp(−a2[ξ(k,m)−c])

.
(7)

Finally, the enhanced speech signal x̂(n) is obtained by trans-

forming X̂(k,m) back to the time domain using an inverse STFT.

3. A PRIORI SNR ESTIMATION

3.1. Traditional Decision-Directed Approach

Since the clean speech signal is practically unavailable, the a priori
SNR from Eq. (3) has to be estimated. The most widely used method
is the DD approach, given by [5]

ξ̂DD(k,m) = β
|X̂(k,m− 1)|2

λ̂v(k,m)
+ (1− β)P [γ(k,m)− 1] (8)

where λ̂v(k,m) and X̂(k,m−1) denote, respectively, the estimated
noise PSD and the estimated clean speech spectrum from the pre-
ceding frame. In this work, the noise PSD is estimated by using the
step-size controlled noise estimator in [6]. The parameter β denotes
the smoothing factor and P [.] denotes the half-wave rectification.
The advantage of the DD approach is its capability to eliminate mu-
sical noise based on the choice of β in the conditional smoothing
procedure [2].

3.2. Modified Decision-Directed Approach

The drawback of the traditional DD approach is the extra one-frame
delay during speech transients, e.g. speech onsets and offsets, result-
ing in a degradation of speech quality. This is due to the fact that the
a priori SNR estimate depends on the estimation of the clean speech
spectrum in the previous frame. As a consequence, the gain func-
tion matches the previous frame instead of the current one. Thus, we
propose to reduce the delay in speech transients by matching both es-
timates of the clean speech spectrum and the a priori SNR estimate
with the current noisy speech spectrum. This is done by modifying
the first term of the DD approach such that the gain function at pre-
vious frame is mapped with the current noisy speech spectrum. The
modified approach is given by

ξ̂MDD(k,m) = β
|G(.)(k,m− 1)Y (k,m)|2

λ̂v(k,m)
+(1−β)P [γ(k,m)−1]

(9)

where G(.) denotes the gain function used in the speech enhance-
ment scheme, such as the afore-mentioned LSA, Wiener or MSIG.
Since the first term of Eq. (9) does not contain an estimate of the
a priori SNR at previous frame, the modified approach can no longer
represent a conditional first order recursive averaging algorithm as in
Eq. (8). As such, it increases the sensitivity of the a priori SNR es-
timate towards the abrupt changes in speech signal, which directly
reduces the speech transient distortion. However, such variance in
the a priori SNR estimate can again lead to audible musical noise. In
order to reduce, or eliminate the musical noise, the proposed method
is smoothed by modifying the a posteriori SNR in Eq. (4) as [4]

γ̄(k,m) =
λy(k,m)

λ̂v(k,m)
(10)

where λy(k,m) = αyλy(k,m− 1)+ (1−αy)|Y (k,m)|2 denotes

the noisy speech PSD. The parameter αy = exp
(

−2.2R
tyfs

)
is the

time averaging constant.

4. REPRESENTATIVE OBJECTIVE MEASURES

The performance of the speech enhancement scheme has a trade-off
between musical noise, speech distortion and noise reduction. Any
performance evaluation can be meaningless if it does not represent
results from all of these trade-offs. Therefore, an objective evalua-
tion metric is utilized to evaluate and compare the results between
the amount of musical noise, speech distortion and noise reduction
generated from the speech enhancement schemes.

First of all, the musical noise and the noise reduction should
only be calculated during noise-only periods in short-time spectral
domain. Since in practical situations the true noise PSD is often
not known, a reference VAD is required for performance evaluation
without the knowledge of noise characteristics. In order to obtain
the VAD decisions at different frames and frequency bins, the multi
decisions sub-band VAD (MDSVAD) is utilized [7]. Given two hy-
potheses, H0 (k,m) and H1 (k,m), which indicate speech absence
and presence respectively in the kth frequency bin of the mth frame,
the MDSVAD decisions are given by

D (k,m) =

{
1 H0 (k,m)

0 H1 (k,m) .
(11)

The amount of musical noise is believed to be highly correlated
with the number of isolated spectral components and their level of
isolation [8]. Since such components have relatively high power,
they can be perceived as tonal sound that is strongly related to the
weight of skirt of the probability density function (PDF). A signal
with skirt can be identified using higher-order statistics, i.e. kurtosis.
However, in order to identify only the musical-noise components,
a kurtosis ratio (KurtR) is used to measure the change in kurtosis
between the noisy signal and enhanced signal. In contrast to the
approach in [8], which involved a musical noise assessment theory
for spectral subtraction function, this measure is defined in this paper
as

kurtR = E

{Kx̂(k)

Ky(k)

}
(12)

where Kx̂(k) and Ky(k) denote the kurtosis of the enhanced signal
and the noisy signal, respectively at k-th frequency bin. Both of
them are computed only during speech absence periods, as given by

Kx̂(k) =

∑M
m=1 |X̂ (k,m)D(k,m)|4{∑M
m=1 |X̂ (k,m)D(k,m)|2

}2 − 2. (13)
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Ky(k) =

∑M
m=1 |Y (k,m)D(k,m)|4{∑M
m=1 |Y (k,m)D(k,m)|2

}2 − 2. (14)

A smaller value of KurtR in Eq. (12) indicates less musical noise.
Meanwhile, the amount of noise reduction can be defined as the

input noise power in dB minus the output noise power in dB. This
noise reduction ratio (NRR) is defined during noise-only periods as

NRR [dB] = 10 log10

∑M
m=1

∑K
k=1 |Y (k,m)D(k,m)|2∑M

m=1

∑K
k=1 |X̂ (k,m)D(k,m)|2 . (15)

For speech distortion measure, the log-likelihood (LLR) mea-
sure is used. It is a spectral distance measure that models the mis-
match between the formats of the clean and enhanced speech signals
[9]. The LLR measure is defined as

dLLR

(

lx̂,
lx

)
=


lx̂Rx

lTx̂


lxRx

lTx

(16)

where 
lx and 
lx̂ are the linear predictive coding (LPC) coefficient
vectors of the clean speech signal and the enhanced speech signal
respectively, and Rs is the autocorrelation matrix of the clean speech
signal. A lower LLR score indicates a better speech quality.

5. EXPERIMENTAL EVALUATION

Performance evaluation was done for each speech enhancement
scheme with MSIG, LSA or Wiener. The speech sequences were
taken from NOIZEUS speech database [9] and were added with
pink noise for evaluation. By using the objective evaluation metric
described in the previous section, the tests were done with 0.01 step
for both 0 ≤ ty ≤ 0.1 and 0.9 ≤ β ≤ 0.99. The reference deci-
sions in Eq. (11) were generated from the same speech sequences
but with 50 dB global SNR to reduce miss-detections of speech. The
results were generated with K = 512 frequency bins. A square-root
Hamming window was used for w(n) with 50% overlap (R = 256).

Fig. 1 shows the gain curves of the MSIG function in Eq. (7),
the LSA approach in Eq. (6) and the Wiener filter in Eq. (5) as func-
tions of the a priori SNR. A noise floor ε = 0.1 was used for each
gain function, such that G(.)(k,m) = max

{
ε,G(.)(k,m)

}
. Two

MSIG curves are plotted in the figure to demonstrate the flexibility
of the gain function. For performance evaluation, MSIG1 with pa-
rameters a1 = 3, a2 = 1 and c = 0.7 was used, which gives heavier
attenuation at low a priori SNR region. An advantage of MSIG is
a larger gain value at ξ(k,m) = 0 dB when compared to other two
methods. This allows more speech components to be preserved.

Fig. 2 shows that when αy = 0, a large β is preferred for low
musical noise in conventional DD approach. However, for all the

gain functions, ξ̂DD(k,m) follows the γ(k,m)−1 estimate with one
frame delay in speech frames when β is close to 1 (β = 0.98). Such
drawback can be eliminated by using the proposed MDD approach.

Besides that, for ξ̂DD(k,m), the degree of smoothing at noise-only
frames varies for different gain functions. As shown in the figure,
hardly any smoothing can be observed apart from the LSA approach.
Although all gain functions have almost the same level of smoothing

for ξ̂MDD(k,m), the variations at noise-only frames remain large. In
this case, αy plays an important role in reducing such variations.

Figs. 3-6 show the averaged KurtR, NRR and LLR measures for
MSIG, LSA and Wiener. Figs. 3 and 4 show the results for DD and
MDD, respectively at 0 dB SNR while Figs. 5 and 6 show the results
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Fig. 2. Speech sequence with pink noise at 15 dB SNR: comparison

between MDSVAD decisions, γ(k,m)−1 (dashed line), ξ̂DD(k,m)

(solid line), and ξ̂MDD(k,m) (dotted line) at 937.5 Hz, β = 0.98.

for DD and MDD, respectively at 15 dB SNR. The smoothing con-
stant αy is plotted instead of ty , in conjunction to β for consistency
in terms of the frame rate. As observed from the figures, the trade-off
is not linear especially for the amount of speech distortion and musi-
cal noise generated from LSA method with DD approach. Thus, the
advantage of the evaluation metric is a better understanding of the
trade-off between those measures.

In overall, it can be seen that the MDD approach generates less
musical noise, particularly for MSIG and Wiener, when compared to
DD approach. In terms of the amount of noise reduction and speech
distortion, the results for both the DD and MDD approaches are al-
most identical for all the gain functions at 0 dB SNR. Whilst at 15
dB SNR, both MSIG and Wiener have lower speech distortion for
MDD approach when compared to the DD approach, except for the
LSA approach. More speech distortion is observed for LSA with the
MDD approach when β < 0.97. This is because when β is small,
DD approach corresponds to a smoothed version of the ML estimate
without much delay in speech frames. However, it is shown in Fig.
5 than when β decreases, the amount of musical noise generated for
LSA remains almost identical but with less noise reduction. This in-
dicates when β is small, more tonal sound will be perceived. In this
case, NRR can be increased by increasing αy . When αy is large, the
MDD approach introduces less musical noise and speech distortion
when compared to the DD approach.

In terms of the performance of different gain functions, when
αy = 0, the LSA approach gives the best performance with the
smallest KurtR and LRR, but a smaller NRR. While αy is consid-
ered and increased, both MSIG and Wiener can achieve less musi-
cal noise with larger NRR, particularly at 0 dB SNR. Furthermore,
since MSIG has a steeper slope with heavier attenuation at low SNR
region, the required degree of smoothing for β and αy to eliminate
musical noise is less than the Wiener filter. However, although MSIG
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Fig. 3. Mean results with ξ̂DD at SNR = 0 dB.
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Fig. 4. Mean results with ξ̂MDD at SNR = 0 dB.

and Wiener can achieve approximately zero KurtR with sufficiently
high NRR, the corresponding values of LRR become much larger
compared to the LSA approach. In general, a smaller β is preferred
in a speech enhancement scheme to obtain less speech distortion,
while the value of αy depends on the global SNR. In addition, a
small αy is required for high SNR conditions while a large αy can
be tolerated in low SNR conditions.

6. CONCLUSIONS

An objective evaluation metric is used to analyse the trade-off be-
tween musical noise, noise reduction and speech distortion for dif-
ferent noise reduction algorithms based on two a priori SNR estima-
tion methods. A modified decision-directed approach is proposed to
improve the performance by eliminating the speech transient distor-
tions in the a priori SNR estimate. Based on the evaluation metric,
the trade-off for different algorithms can be well-balanced by apply-
ing different level of smoothing using two parameters β and αy .
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