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ABSTRACT

In this paper, we propose a spectral difference approach
for noise power estimation in speech enhancement. The noise
power estimate is given by recursively averaging past spec-
tral power values using a smoothing parameter based on the
current observation. The smoothing parameter in time and
frequency is adjusted by the spectral difference between con-
secutive frames that can efficiently characterize noise varia-
tion. Specifically, we propose an effective technique based
on a sigmoid-type function in order to adaptively determine
the smoothing parameter based on the spectral difference.
Compared to a conventional method, the proposed noise es-
timate is computationally efficient and able to effectively fol-
low noise changes under various noise conditions.

Index Terms— Noise Estimation, Spectral Difference,
Sigmoid function

1. INTRODUCTION

Noise power estimation is a crucial component of speech
enhancement. System performance is greatly affected by
low signal-to-noise ratio (SNR) conditions and non-stationary
noise environments since it is difficult to reliably track rapid
variation over a varying noise spectrum [1]-[2]. Soft deci-
sion (SD), the well-known noise power estimation technique,
has been successfully adopted as a fundamental module of
speech enhancement systems [3]. Specifically, the long-term
smoothed power spectrum of noise that depends on the prob-
ability of speech absence is used. Indeed, the speech ab-
sence probability (SAP) is induced from a likelihood ratio test
(LRT) based on a statistical model of speech. However, this
method needs to be improved since it does not fully consider
non-stationary noise. In the case of non-stationary noise, it
is difficult to efficiently update the noise power when a fixed
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long-term smoothing parameter is used. To solve this prob-
lem, Cohen [4] proposed a recursive averaging technique con-
trolled by the minima (called MCRA). However, this tech-
nique is insensitive to spectral variation because it is inher-
ently based on the local energy of noisy speech and its mini-
mum is derived using an indicator function.

The goal of this paper is to incorporate the spectral dif-
ference between two successive frames when updating the
noise power. This is due to the clear difference in station-
ary noise and non-stationary noise in terms of the spectro-
temporal properties. This difference allows us to adaptively
increase the noise update rate only for non-stationary noise,
with the spectrum level changing rapidly in time. In this
regard, in contrast to the conventional method with a fixed
smoothing factor, the proposed noise update parameter uti-
lizes the sigmoid function for the adaptive factor when the
smoothing parameter is determined by the spectral difference
between the current observation and the data in the previous
frame. In this paper, the proposed method is evaluated in the
known speech enhancement algorithm and experimental re-
sults of speech quality are given for a data set of real noise
samples.

2. REVIEW OF SOFT DECISION BASED-SPEECH
ENHANCEMENT

We first briefly review soft decision-based speech enhance-
ment. It is assumed that a noise signal d is added to a speech
signal z, with their sum being denoted by a noisy speech sig-
nal y. After taking the discrete Fourier transform (DFT) of the
noisy signal y, we then have in the time-frequency domain

Y(t, k) = X(t,k) + D(t, k) (1)

where k is the frequency-bin index (k = 0,1, -+, M — 1)
and ¢ is the frame index. Assuming that speech is degraded
by uncorrelated additive noise, two hypotheses, Hy and H;,
which indicate speech absence and presence, respectively, are
given by
Hy :speechabsent : Y (t,k) = D(t, k) 2)
Hy :speechpresent: Y (t,k) = X(t,k) + D(t, k).
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With the complex Gaussian probability density functions
(pdfs) assumption, the distributions of the noisy spectral com-
ponents conditioned on both hypotheses are given by
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where A, (t,k) and Ag(t,k) denote the variances of X
and Dy, respectively. If the spectral component in
each frequency bin is assumed to be statistically indepen-
dent, then we have the global speech absence probability
(GSAP) conditioned on the current observation of Y (¢)(=
{Y(t,0),Y(t,1),---,Y(t, M —1)}) using Bayes’rule as in
[3] such that

p(Y (L, k)|H1)

p(HolY (t)) = (5)
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where P(Hy)(= 1 — P(H4)) is the a priori probability for
speech absence and A (t) is the likelihood ratio (LR) in the
kth frequency bin [3].

The SD method adopts the long-term smoothed noise
power estimate Ay(t, k), which is given by [3]:

Aa(t +1,k)
= Cada(t: k) + (1= C)E[[D(, F)PY (1, k)] (6)

where (; is the smoothing parameter, which is set to 0.99 in

[3].

3. PROPOSED APPROACH BASED ON SOFT
DECISION EMPLOYING SPECTRAL DIFFERENCE

In the previous section, we reviewed the noise estimation
method based on soft decisions where the noise power spec-
trum is estimated by recursively averaging past spectral power
values using the fixed long-term smoothing parameter given
by ((4 = 0.99) under a general stationarity assumption of
noise power spectra [3]. However, the detection reliability
severely deteriorates for non-stationary noise environments
since the fixed smoothing parameter restricts the robust track-
ing capability of the noise estimator. For example, a lower
value in (4 for non-stationary noise results in a faster response
to noise adaptation, but may increase fluctuations between
non-speech and speech segments. In contrast, a higher value
(22 1) of ¢4 to handle the stationary noise for stability re-
sults in slow adaptation in the case of non-stationary noise.
Thus, we need a smoothing parameter that is adjusted by the
amount of background noise that is non-stationary for robust

4650

noise adaptation. For this, we first define the spectral differ-
ence between adjacent noise frames in order to identify the
degree of the noise non-stationarity. Specifically, the spectral
difference A(t, k) at the kth frequency bin in the ¢th frame is

defined by the normalized difference between |Y (t, k)|? and
|Y'(t — 1, k)|? such that
Y (k)2 —Y(t—1,k)?
A - IVERE =¥ (= 1)) o

Y (t)
| M-
where Y (t) = Y Z [Y'(t,k)|* denote the average noise

k=
power of the current frame. We then obtain the geometric
mean of A(t, k) for the individual frequency bins, given by:

1 M-—1
Mﬂ:EZE:AmM. 8)
k=0

Subsequently, the long-term smoothing is performed such
that

A(t) = agA(t —1) + (1 — aq) A(t) 9

where ag(0 < o < 1) is a parameter for smoothing the spec-
tral difference. Also, it should be noted that the update routine
for A(t) should be given during the speech absence since we
are interested in the spectral difference in noise. For this, we
derive an updated routine of A(t) by utilizing the soft deci-
sion scheme and (5) as follows:

A(t) = {adA(t—1)+ (1 — aqg)A(t)} p(Ho|Y (1))
+ At —1)(1 = p(HolY (t)) (10)

where (12) becomes (11) when p(Hy|Y (t)) = 1 while A(t)
is not updated (i.e., A(t) = A(t — 1)) and sustained in the
case of p(Ho|Y (t)) = 0.

Note that an estimator from A(t) could be a relevant mea-
sure to take into account the degree of noise non-stationarity
since A(t) becomes high when the noise characteristics vary
quickly in terms of power, as in the case of the nonstationary
noise. In contrast, A(t) yields a lower value in the case of the
stationary noise, the characteristics of which change slowly.
The more nonstationary the noise source (babble compared to
white), the larger A(t) gets, as we expect (in Fig. 1). Also,
Fig. 2 shows a representative example of A(t), showing the
histogram of A(t) under various noise types. From these fig-
ures, it is evident that A(t) varies depending on noise fluc-
tuation. A(t) can be considered a control factor to adjust the
noise spectrum depending on the change in noise power level.

To cope with this idea, we propose the adaptive weighting
factor incorporating a sigmoid type function. Specifically, an
adaptive value based on the sigmoid type function according
to A(t) is applied to the long-term smoothing parameter in
the noise update as shown below

5D (g) — dexp[—0(s(t) — s0)]
d 1+ exp[—B(s(t) — s0)]

+o (11
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Fig. 1. Comparison of A(t) for noisy speech corrupted by the
babble and white noise (SNR = 5dB).
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Fig. 2. Normalized distribution of spectral difference for the
various noisy speech signal.

with
s(t) = log(1/A(t)) (12)

where 3(> 0) is the slope parameter and sg denotes an off-
set. Through extensive speech enhancement experiments,

5D(t) is obtained using 8 = 0.75, so = —9, the constant
0 = —19, and 0 = 0.999. Notice that the sigmoid type func-
tion of (13) makes the long-term smoothing parameter, ¢ dS D,
inversely proportional to A(t) while limiting the value to the
interval, (C4,min, Cd,max)- The high transition of noise spec-
tral power is characterized by the increase of A(t). Increas-
ing A(t) results in decreasing log(1/A(t)), and thus the pro-
posed weighting factor, ¢ (f D approaches (g min» Which makes
it possible to update the noise power more quickly. On the
other hand, decreasing A () results in increasing log(1/A(t))
on each frame, and thus a high value of the weighting factor
is applied to update noise on a more robust value. As a result,
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the proposed estimation for the noise power is given as

PP (ONP (k)

iC (O)E[D(t, k)Y (¢, k).
(13)

NP+ 1,k) =
+ (1-

The present scheme can efficiently update the noise power in
the case of nonstationary noise in which the spectrum vary
rapidly. This implies that the proposed noise power esti-
mate is more accurate than the previous noise power estimate,
which has a fixed long-term smoothing parameter, and could
improve the performance of speech enhancement. As an ap-
plication of the presented technique, we adopt a speech en-
hancement algorithm based on a minimum mean-square error
(MMSE) as follows:

X(tvk) = G(é(t,k),’?(t,k))}/(t,k') (14)

where X (t,k) is the estimated clean speech spectrum and
G(+,-) denotes the noise suppression gain. The noise sup-
pression gain is given by

G(E(t, k), A(t, k)

. [(1 ot k) (”(’;’“)) +u(t, k) (u(tz, k))]
(15)

in which I and I; are the modified Besse} function of the zero
and first orders. v(t, k) is defined using £(¢, k) and 4(¢, k) as

_ ELE)
v(t, k) = T 20 o k)v(t,k) (16)
where
. At k) Y (R
€D =5 1O =S (7

4. EXPERIMENTS AND RESULTS

The proposed adaptive noise power estimation technique
was evaluated with an objective quality experiment under var-
ious noise conditions. The experimental data comprised 48
test phrases, where 24 were spoken by two male speakers
and the other 24 were spoken by two female speakers. FEach
phrase consisted of two different meaningful sentences and
lasted 8 s. The noise power estimation was performed for
each frame of 10 ms duration with a sampling rate of 8 kHz.
Four types of noise sources such as babble, office, street, and
white noise from the NOISEX-92 database were added to the
clean speech waveform at SNRs of 5, 10 and 15 dB. Table
| shows the perceptual evaluation of speech quality (PESQ)



Table 1. PESQ results for the proposed algorithm with re-
spect to the conventional method (SEGSD) and the IMCRA
method under various background noise environments.

Environments [ Method
Noise [ SNR (dB) [| IMCRA [6] [ SEGSD [3] [ Proposed
5 2.43840.07 [ 2.477+0.08 [ 2.509+0.08

Babble 10 2.784£0.06 [ 2.834+0.08 | 2.854£0.08
15 3.066£0.06 [ 3.110£0.07 | 3.116£0.07

5 2.48440.07 | 2.46010.07 | 2.490+0.08
Office 10 2.810£0.06 | 2.796+0.07 | 2.815+0.07
15 3.08740.05 | 3.073+0.07 | 3.084+0.07

5 2.80640.05 | 2.7344+0.07 | 2.749+0.07
Street 10 3.063+£0.05 [ 2.99440.06 | 3.004£0.06
15 3.310+£0.05 [ 3.23140.06 | 3.242£0.06
5 2.40240.08 | 2.210+0.07 | 2.271£0.07
White 10 2.730£0.05 [ 2.542+0.07 | 2.594£0.07
15 2.968+0.04 | 2.850£0.06 | 2.887£0.06

Table 2. Overall quality (C,,,;) results for the proposed algo-
rithm with respect to the conventional method (SEGSD) and
the IMCRA method under various background noise environ-
ments.

Environments Method
Noise [ SNR (dB) [| IMCRA [6] [ SEGSD [3] [ Proposed
5 2.35410.08 [ 2.789+0.08 [ 2.832+0.08

Babble 10 2.780£0.08 [ 3.217£0.07 | 3.249£0.07
15 3.131£0.10 | 3.526£0.07 | 3.538£0.07

5 2.71540.07 | 2.8931+0.08 | 2.923+0.08
Office 10 3.10440.07 | 3.2754+0.08 | 3.294+0.07
15 3.41740.07 | 3.5704+0.07 | 3.583+0.07

5 3.1724+0.06 | 3.19240.07 | 3.20940.07
Street 10 2.473+0.07 [ 2.49740.06 | 3.509£0.06
15 3.7424£0.07 [ 3.75940.06 | 3.773£0.06
5 2.35140.10 | 2.4651+0.08 | 2.534£0.09
White 10 2.697+0.11 [ 2.834+0.08 | 2.895£0.08
15 2.964£0.11 [ 3.163£0.08 | 3.208£0.08

scores for various noise types and at various noise levels. The
proposed method consistently achieves more improvement
compared to the conventional method (the SEGSD method
[3]). Its advantage is more significant in nonstationary and
low-SNR noise environments. And, our approach achieved
a higher improvement or was at least comparable to the pre-
vious adaptive noise power estimation technique (denoted by
the IMCRA [6]) except the stationary noise such as white.
On the other hand, we used the well-known objective
speech quality check method (called composite measure [5])
having the significant correlation with subjective quality as a
combination of various representative objective quality mea-
sures, which was proposed in [5]. Specifically, the compos-
ite measure represents a five point scale of background noise
intrusiveness and the overall quality using the mean opin-
ion score (MOS) scale. Table 2 presents the results of the
overall quality. These results show that the proposed method
consistently results in superior performance compared to the
SEGSD method and the IMCRA method. This finding is
much valuable when considering the previous PESQ results,

which show that our approach is effective for both the noise
signal and the speech signal in terms of the subjective qual-
ity. The proposed method leads to better results in not only
non-stationary noise such as babble, but also stationary noise
such as white noise. This is attributable to the on-line noise
adaptation for better subjective quality on a frame-by-frame
basis, which depends on the spectral difference. Note that the
spectral difference of the white noise can vary as shown in
Fig. 1, and eventually requires adaptive updating of the noise
power.

5. CONCLUSIONS

The proposed technique comprises steps for deriving the
spectral difference and the adaptive smoothing parameter for
updating the noise power. This is clearly different from con-
ventional techniques because we restrict the updating of the
noise estimator during speech absence or adapt the smoothing
parameter according to the speech absence probability. Com-
pared to the conventional method, the proposed noise estimate
responds more efficiently to noise variation, when integrated
into an MMSE-based speech enhancement system and yields
effective performance under various noisy conditions.
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