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ABSTRACT

We present a new method for inventory-style speech enhancement
that significantly improves over earlier approaches [1]. Inventory-
style enhancement attempts to resynthesize a clean speech signal
from a noisy signal via corpus-based speech synthesis. The advan-
tage of such an approach is that one is not bound to trade noise sup-
pression against signal distortion in the same way that most tradi-
tional methods do. A significant improvement in perceptual quality
is typically the result. Disadvantages of this new approach, however,
include speaker dependency, increased processing delays, and the
necessity of substantial system training. Earlier published methods
relied on a-priori knowledge of the expected noise type during the
training process [1]. In this paper we present a new method that ex-
ploits uncertainty-of-observation techniques to circumvent the need
for noise specific training. Experimental results show that the new
method is not only able to match, but outperform the earlier ap-
proaches in perceptual quality.

Index Terms— Inventory-Style Speech Enhancement, Uncer-
tainty-of-Observation Techniques, Modified Imputation.

1. INTRODUCTION

Traditional speech enhancement methods based on filtering and/or
spectral subtraction have reached a high level of sophistication. Yet,
they are still far from matching a human’s ability to separate speech
from noise within an acoustic scene. Further technical improve-
ments are possible, if we learn how to infuse more knowledge about
the specific characteristics of speech into the enhancement process.
Inventory-style speech enhancement provides a powerful avenue to
do just that by tightly restricting the enhanced signal to segments of
prerecorded speech from a targeted individual. Thereby, the proce-
dure shares desirable properties with corpus-based synthesis in pro-
ducing a high quality, naturally sounding output.

This advantage, however, comes at the price of a significantly
increased complexity, higher storage requirements, speaker depen-
dency, and substantial off-line training as implied in the method pro-
posed by Xiao and Nickel in 2010 [1]. Specific techniques for the

1The first author performed the work while at the Institut für Kommu-
nikationsakustik, Ruhr-Universität Bochum, Germany. The work was sup-
ported with a Marie-Curie International Incoming Fellowship through the
European Union, Grant PIIF-GA-2009-253003-InventHI.

reduction of complexity and storage requirements for their method
were discussed in [2]. In this paper we are presenting an approach
that removes significant constraints in the off-line training of the sys-
tem. While the original approach by Xiao and Nickel required noise
specific training [1], we were able to devise a system that does not
require any a priori knowledge about the expected noise during the
training process. An expansion of the bandwidth of the proposed
system from 8 kHz to 16 kHz was accomplished at the same time.

A key problem in inventory-style enhancement is the reliable
recognition of the underlying phonetic class of a noisy speech seg-
ment. In standard approaches to speech recognition or phoneme
classification, it is generally assumed that preprocessing delivers a
good estimate of the clean speech signal. Preprocessed speech pat-
terns are compared to the clean speech patterns on file to obtain an
estimate of the true word or phoneme sequence. Under severely dis-
torted conditions, however, using just a point estimate of the clean
speech is generally not the optimum approach. Instead, it can be
valuable to consider clean speech as an unknown process that can
only be estimated with a residual, time-varying error variance. The
ability to estimate this variance can lead to significant improvements
in recognition performance, since the recognizer can then focus on
more reliable segments and/or features via techniques such as vari-
ance compensation [3] or modified imputation [4]. In the specific
case considered here, respective variances are estimated in the spec-
tral domain and then propagated into a cepstral-feature domain with
techniques described in [5] and [6].

2. PROPOSED ENHANCEMENT METHOD

In the proposed procedure we are dealing with discrete time signals
that have been sampled at a rate of 16 kHz. We have access to a
clean, i.e. undistorted, inventory of “example” recordings from the
targeted individual. For notational simplicity we assume that all sep-
arately recorded inventory utterances are concatenated into one long
signal stream s[n]. We use x[n] to denote an observed noisy utter-
ance from the targeted speaker. We consider x[n] = z[n] + v[n]
as the input to our enhancement system, in which z[n] denotes the
underlying clean speech signal and v[n] denotes additive noise.

The proposed procedure employs signal segmentations with
varying grades of “granularity”. We use the notation s(n ;L) to
denote a vector of L successive samples of s[n] from n to n+L−1,
i.e. s(n ;L) = [ s[n] s[n + 1] . . . s[n + L − 1] ]T. The signal
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segmentation that is employed in the phonetic classification stage
of our procedure (see Section 2.1) uses 20msec frames with a 50%
overlap:

s[i] = s(160 · i ; 320) (1)

The symbols x[i] and z[i] are defined analogously. The signal seg-
mentation for the correlation-search stage of our procedure (see Sec-
tion 2.3) operates on a finer grid. Here, we employ 10msec frames
with a 87.5% overlap:

sk = s(20 · k ; 160) (2)

Again, symbols xk and zk are defined analogously. Enhancement is
essentially performed by replacing incoming noisy frames xk with
clean inventory frames sk as described in Section 2.3. A brief, con-
ceptual description of our entire procedure, including the system
training part, is provided in the following subsections.

2.1. Robust Feature Extraction

To increase the robustness in the unit selection process described in
Section 2.3 a speech feature computation with uncertainty propaga-
tion was used. Our implementation followed the lines of [6], using a
Wiener filter based spectral estimator to compute mel-frequency cep-
stral coefficients (MFCC) as features cs[i] in synchronization with
our signal segmentation from equation (1). For this particular im-
plementation amplitude based MFCCs with cepstral mean subtrac-
tion where used to attain improved performance. In an initial step,
conventional speech enhancement in the short-time Fourier trans-
form (STFT) domain was applied as well. In this domain the most
commonly applied model is the complex Gaussian distortion model,
from which Wiener or Ephraim-Malah filters are derived. For this
model, the Wiener estimator has the complex Gaussian posterior dis-
tribution p(S|X) = NC

(
S;SW , λ

)
in which SW is the Wiener

estimate of a clean Fourier coefficient of s[n] and λ is the residual
mean square error. Conventional speech enhancement transforms the
point estimate of the filter SW into the feature domain. Uncertainty
propagation transforms the whole associated posterior distribution
instead, which leads to a corresponding feature posterior. It can be
demonstrated that the posterior for the selected features is well ap-
proximated by the Gaussian distribution

p( cs[i] |x[i] ) ≈ N (cs[i];μcs[i],Σcs[i]) (3)

were the feature means μcs[i] and covariance matrices Σcs[i] can be
obtained by applying [5, Eqs. 6.7, 6.9, 6.14, 6.16, 6.38, and 6.39].

Estimates of feature means μ̂cz[i] and covariances Σ̂cz[i] for the
clean segments z[i] that are underlying to our noisy input segments
x[i] are computed from the x[i] analogously.

2.2. System Training and Inventory Design

The goal of the system training and inventory design stage is two
fold: (1) we need to divide the inventory into collections Sq of pho-
netically similar segments s(np ;Lp) with varying lengths Lp for
p = 1 . . . Pq , and (2) we need to arrive at a statistical description
that tells us which set of collections Sq is most likely to contain an
inventory subsection that best matches the underlying clean frame
zk of an incoming noisy frame xk.

The division of the inventory s[n] into the collections Sq is per-
formed in a step-by-step fashion. First, all silent sections contained
in s[n] are removed. The non-silent part of the inventory is then di-
vided into sections that each belong to one of 40 phonetic classes.
In this work, we employed the phonetic transcription that was pro-
vided with our experimental database (see Section 3). If a phonetic
transcription is not available one may also use the unsupervised clus-
tering method described in [1]. Both methods work equally well.

Short-time MFCC features means μcs[i] after Section 2.1 are
computed for all segments of the inventory. A Gaussian mixture
model (GMM) with 3 mixtures and diagonal covariance structure is
trained with the corresponding μcs vectors for each phonetic class.
The GMMs are then used to reclassify each μcs. Many vectors re-
main in the same class, yet a substantial number is reassigned. The
underlying inventory sections are reassigned accordingly as well. We
then divide the μcs vectors of each phonetic class into three sub-
classes via a Euclidean k-means algorithm. Again, the underlying
inventory sections are reassigned accordingly. The purpose of this
subdivision is to provide flexibility in distinguishing coarticulation
effects in the incoming speech. Lastly, we fit a Gaussian PDF model
with a diagonal covariance structure to the μcs vectors of each of the
resulting 120 phonetic1 classes. As a result we obtain 120 Gaussian
PDF models N (μcs;μcsq,Σcsq) and the associated signal segment
collections Sq for q = 1 . . . 120.

In a next step we consider the temporal development of the
MFCC feature means μcs across the non-silent part of the inventory.
Every vector μcs[i] is classified with the Gaussian PDF models
N (μcs;μcsq,Σcsq) to belong to a specific class q∗[i] ∈ [1, 120].
All transitions from class q∗[i] to class q∗[i + 1] are tallied and
a 120×120-dimensional state transition probability matrix P is
computed.

2.3. Inventory-Based Speech Enhancement

The enhancement process is performed in two separate streams
ẑF [n] and ẑI [n], which are eventually merged to form the enhanced
output signal ẑ[n]. Stream ẑF [n] is computed from input frames x[i]
according to a standard, filtering-based enhancement method. In our
approach we use the popular Log-MMSE method by Ephraim and
Malah in combination with the usual decision-directed approach for
the estimation of the underlying a-priori SNR in the short-time DFT
domain [7]. The resulting a-priori and a-posteriori SNR estimates
are also used as an input to a log-likelihood style voice activity de-
tection after Sohn and Kim [7, section 11.2] which provides a “voice
active” or “voice not active” decision for each x[i]. The decision
of the VAD for each frame is fed through a 7-tap median filter to
smooth out decision-flickering at the activity boundaries.

Those frames x[i] that are flagged as “voice active” are subjected
to an inventory search process. In a first step, MFCC feature means

μ̂cz[i] and the associated covariance estimates Σ̂cz[i] are computed
according to Section 2.1. A noise adapted feature mean estimate
μ̂′

cz[i] is produced for each of the q = 1 . . . 120 phonetic class mod-
els according to the modified imputation approach:

μ̂′
cz[i] = (Σ̂

−1

cz [i] +Σ−1
csq)

−1 (Σ̂
−1

cz [i] · μ̂cz[i] +Σ−1
csq ·μcsq) (4)

With μ̂′
cz[i] we can find likelihood values λq[i] for each phonetic

class via: λq[i] = N (μ̂′
cz[i];μcsq,Σcsq) (5)

The likelihood values are normalized across all q to sum to one, so
that they can be interpreted as observation probabilities of the given
frame x[i] under the assumption of the phonetic class q. In combi-
nation with our state transition matrix P from Section 2.2 it is then
possible via a Viterbi algorithm to find the most likely sequence q∗[i]
of phonetic class memberships for a given sequence of “voice active”
segments x[i]. The sequence q∗[i] is expanded into not only the sin-
gle best, but the three top most probable class memberships q1[i],
q2[i], and q3[i] via a ‘one-step’ log-probability state estimator. The
corresponding inventory collections Sq1 , Sq2 , and Sq3 are merged

1The resulting classes are, in fact, representing sub-phonetic units at this
stage. For simplicity we will, nevertheless, refer to them as phonetic units.
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to form the subset of all inventory sections S[i] that are considered
possible representations for the clean underlying speech signal z[i]
contained in x[i].

The search for the best segment in S[i] is performed with a
matched filter approach [1]. For the search we are moving from our
coarse grid, implied in our x[i] notation, to the fine grid, implied in
our xk notation from equation (2). The resulting best-fitting inven-
tory frame sk is first energy normalized to match the corresponding
energy in stream ẑF [n] and then cross faded with adjacent frames
into the inventory stream ẑI [n].

In a last step we are merging the two streams ẑF [n] and ẑI [n]
into the enhanced output ẑ[n]. During “voice active” sections stream
ẑI [n] is switched on, and during “silent” sections stream ẑF [n] is
switched on.

3. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed method in compari-
son to three reference techniques: (a) a baseline system similar to the
one proposed by Xiao and Nickel in [1], (b) the Log-MMSE method
proposed by Ephraim and Malah [7], and (c) the Multiband Spectral
Subtraction (MBSS) method proposed by Kamath and Loizou [7].
Out of the wealth of possible choices for our references we chose
the Log-MMSE and the MBSS approach because they were the most
competitive from all of the reference techniques studied in [1].

The speech data that we used in our experiments was taken from
the CMU_ARCTIC database from the Language Technologies Insti-
tute at Carnegie Mellon University2. It consists of recordings from
seven English speakers with 1132 phonetically balanced utterances
each. Most utterances are between one and four seconds long. The
database includes full phonetic transcriptions of all utterances with
(roughly) 40 elementary phonetic units per speaker.

The employed additive noise stems from the NOISEX database
from the Institute for Perception-TNO, The Netherlands Speech Re-
search Unit, RSRE, UK3. In our study we used three types: (1)
white noise, (2) buccaneer jet cockpit noise (to represent a station-
ary, non-white noise type), and (3) speech babble (to represent a
non-stationary noise type). The noise was added to the speech data
at signal-to-noise ratios (SNR) of 5 dB, 10 dB, and 15 dB, under con-
sideration of the respective active speech level after ITU-T P.56.

Enhanced speech was produced after the proposed inventory-
based modified-imputation (Inventory MI) technique described in
Section 2. The available speech data was split into two disjoint sets:
(1) a training set, which served as our inventory and consisted of
1082 utterances per speaker, and (2) a testing set for performance
evaluations, which consisted of 50 utterances per speaker. Log-
MMSE and MBSS results were computed from the 50 testing ut-
terances as described in [7]. As a baseline reference for inventory-
style enhancement we used a method similar to the one proposed in
[1]. It employs vector-quantization for phoneme classification and is
therefore referred to as Inventory VQ. The differences between the
Inventory VQ method used here and the one proposed in [1] were:
(1) we are operating on 16 kHz data instead of 8 kHz data, (2) we
are using 40, instead of 50, phonetic clusters, and (3) we are training
our system with 10 dB white noise only. An evaluation at a different
SNR value and with a different noise type, therefore, establishes a
mismatch scenario between training and testing for the Inventory VQ
case. The modifications were necessary to guarantee a fair compari-
son between the Inventory VQ method and the Inventory MI method,
which does not require any noise specific training.

2The corpus is available at <http://festvox.org/cmu arctic/>.
3The noise is available at <http://spib.rice.edu/spib/select noise.html>.

TABLE I – PCRA SCORES

UNDER VARIOUS NOISE CONDITIONS

PCRA in % (White Noise) 5dB 10dB 15dB

Inventory VQ (Xiao/Nickel) 74.45 77.83 78.88
Inventory MI (Proposed) 81.10 79.20 75.37

PCRA in % (Jet Cockpit Noise) 5dB 10dB 15dB

Inventory VQ (Xiao/Nickel) 69.40 73.44 76.80
Inventory MI (Proposed) 78.86 77.27 73.66

PCRA in % (Babble Noise) 5dB 10dB 15dB

Inventory VQ (Xiao/Nickel) 62.17 68.66 72.51
Inventory MI (Proposed) 80.24 77.22 71.33

The performance of all considered methods was evaluated with
three objective quality measures: the Phonetic Cluster Recogni-
tion Accuracy (PCRA), the Perceptual Evaluation of Speech Quality
(PESQ, [8]), and the Short-Time Objective Intelligibility (STOI, [9]).

The PCRA is an indirect measure of quality that allows us to
compare inventory-based enhancement methods. It is correlated
with both quality and intelligibility, especially at lower SNR values.
PCRA scores report how often the estimated phonetic cluster index
of a noisy frame was found to match the true phonetic cluster in-
dex of the underlying clean frame. For the proposed Inventory MI
method, phonetic cluster recognition is performed only for segments
for which the employed VAD, as described in Section 2, signals a
“voice active” state. PCRA scores are therefore computed for such
voice active sections only. To obtain a fair comparison we ensured
that the computation of PCRA scores for the Inventory VQ method
was based on the same sections.

Table I shows the resulting PCRA scores from our experiments
under the three considered SNR levels and the three considered noise
types. The score of the best performing algorithm, for each scenario
respectively, is shown in bold-face letters. The proposed Inventory
MI system outperforms the Inventory VQ method in all 5 dB and
10 dB cases across all considered noise types. Particularly remark-
able is the 10 dB white noise case in which the Inventory MI method,
which does not require any noise specific training, was able to eke
out a slight PCRA gain over the Inventory VQ method, which was
specifically trained for the 10 dB white noise case. The PCRA gain
was especially dramatic for 5 dB babble noise. Here, the proposed
method was able to achieve an absolute improvement of over 18%-
points in PCRA score. The proposed method was, unfortunately, not
able to improve PCRA scores in the 15 dB SNR scenarios. At such
high SNR values, however, the losses in PCRA did not translate to
losses in either perceptual quality or intelligibility as measured by
PESQ and STOI (see Figure 1 and Table II).

It is important to point out that one may not interpret table I
as a study of PCRA scores vs. signal-to-noise ratio. A comparison
across different SNRs is meaningless. The PCRA computation is a
function of the underlying SNR-dependent VAD. The segments that
are flagged by the VAD are different for different SNR scenarios and
therefore PCRA scores can be compared fairly between algorithms
but not fairly across different SNRs. The VAD bias also explains
why the Inventory MI recognition rates seem to, paradoxically, im-
prove with decreasing SNR values.

The main target of our study was to improve the resulting en-
hanced signals perceptually (i.e. subjectively). The PESQ score, an
ITU recommendation after Rix et al. [8], is one of the few objective
quality measures that correlate well with the subjective quality of
speech. The resulting PESQ scores from our experiments under the
three considered SNR levels and the three considered noise types are
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TABLE II – PESQ MEASURES

UNDER VARIOUS NOISE CONDITIONS

PESQ (White Noise) 5dB 10dB 15dB

Noisy Signal 1.35 1.69 2.07

Inventory VQ (Xiao/Nickel) 1.95 2.42 2.71

Log-MMSE (Ephraim/Malah) 2.11 2.48 2.76

MBSS (Kamath/Loizou) 1.51 2.15 2.64

Inventory MI (Proposed) 2.25 2.60 2.84

PESQ (Jet Cockpit Noise) 5dB 10dB 15dB

Noisy Signal 1.32 1.63 2.00

Inventory VQ (Xiao/Nickel) 1.55 2.13 2.53

Log-MMSE (Ephraim/Malah) 1.79 2.29 2.62

MBSS (Kamath/Loizou) 1.42 1.94 2.49

Inventory MI (Proposed) 1.82 2.37 2.71

PESQ (Babble Noise) 5dB 10dB 15dB

Noisy Signal 1.66 1.97 2.32

Inventory VQ (Xiao/Nickel) 1.36 1.88 2.33

Log-MMSE (Ephraim/Malah) 1.83 2.22 2.57

MBSS (Kamath/Loizou) 1.85 2.28 2.66

Inventory MI (Proposed) 1.96 2.36 2.68

shown in Table II. Again, the score of the best performing algorithm
for each considered scenario is shown in bold-face letters.

It is readily seen that the proposed Inventory MI method out-
performs all of the reference methods in all of the considered noise
scenarios. The improvements over the Inventory VQ method were
among the largest. The relatively poor performance of the Inven-
tory VQ methods is primarily a consequence of: (1) the inherent
mismatch between training and testing4 and (2) the expansion of the
considered signal bandwidth from 8 kHz to 16 kHz.

The improvements over the Log-MMSE and the MBSS method
are less dramatic but still significant. It is known that the Log-MMSE
method performs generally well in stationary noise, such as jet cock-
pit noise, whereas the MBSS method thrives in non-stationary noise,
such as speech babble. Yet, neither of the two reference methods
is able to obtain top scores in either scenario. The proposed tech-
nique outperforms both methods for both noise types. This result
is expected since the proposed method has access to speech specific
information that is not accessible to either the Log-MMSE or the
MBSS method.

The maintenance of a high level of intelligibility is a concern that
applies especially to enhancement methods that employ an automatic
recognition of phonetic content in low SNR scenarios. An objective
measure that is specifically designed to asses speech intelligibility
is provided by the recently published STOI measure after Taal et al.
[9]. The STOI measure is normalized between zero and one. Scores
close to one indicate perfect intelligibility.

Figure 1 shows the resulting STOI scores from our experiments
under the jet cockpit noise scenario. The STOI results for the other
two noise scenario were similar, but had to be omitted here due to
space limitations. The goal for our proposed method was the im-
provement of the perceptual quality of the enhanced signals without
a noticeable reduction in intelligibility. Figure 1 shows that the STOI
scores of the proposed method are never significantly below the re-
spectively best STOI scores from all of the reference methods. This
result was also confirmed by a few informal listening tests with ex-
pert listeners who rated the intelligibility of the enhanced signals as
virtually undiminished.

4Except for the 10 dB white noise case.
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Figure 1. Average STOI scores for the jet cockpit noise case.

4. CONCLUSION

We presented a substantial revision of a previously published method
for inventory-style speech enhancement [1]. The newly proposed
method employs a phoneme recognition front-end that incorporates
uncertainty-of-observation techniques into the enhancement process.
With the new front-end it becomes possible to substantially relax the
training requirements for the system. The training of the earlier sys-
tem still depended on an a-priori knowledge of the expected noise
type. The new approach, however, is no longer bound by that re-
quirement. Experiments show that the new method is not only able to
match, but outperform the earlier approach in objectively measured
perceptual quality, while retaining the objectively measured intelli-
gibility. Informal listening tests with expert listeners also confirmed
these results. Sound samples will be provided at the conference.
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