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ABSTRACT

This paper explores the noise reduction problem in the Karhunen-
Loève expansion (KLE) domain from a multichannel perspective.
Based on formulations proposed for the design of optimal single-
channel noise reduction in the KLE domain, we formulate the mul-
tichannel noise reduction in the KLE domain. Two different perfor-
mance measures are presented: the noise reduction and speech dis-
tortion. The optimal multichannel Wiener filter is derived and its per-
formance in terms of noise reduction and speech distortion is com-
pared with the performance of the optimal single-channel Wiener
filter. Experimental results show that a significant improvement in
performance is obtained when using multiple microphone signals.
The multichannel Wiener filter results also in better noise reduction
in the presence of coherent noise sources.

Index Terms— Noise reduction, speech enhancement, Karhunen-
Loève expansion (KLE), multichannel, Wiener filter.

1. INTRODUCTION

Traditionally, the noise reduction problem is approached in either the
time or frequency domain. The optimal filters are often estimated
by minimizing the mean-square error between the clean signal and
its estimate. The time domain approach can be sample based, es-
timating one speech sample at a time, while the frequency domain
is often formulated on a frame basis, i.e. a block of noisy speech
signal is transformed into the frequency domain using the discrete
Fourier transform (DFT) and then a filter is estimated and applied to
the frame [1]. The frequency-domain approaches are in general more
flexible with respect to controlling the noise reduction performance
versus the speech distortion, though special attention has to be paid
to the aliasing distortion caused by the independent processing of
subbands. The time domain approaches do not suffer from alias-
ing problems, but are less flexible regarding the performance and
computational complexity [2]. The use of signal-dependent trans-
forms has shown some advantages with regard to speech distortion
and noise reduction [2–4]

Recently, single-channel noise reduction formulation in the
Karhunen-Loève Expansion (KLE) domain, which employs a signal-
dependent transform, has received special attention [2, 4, 5]. The
basic advantages of using the KL transform is that if the covariance
matrices are properly calculated, there will be no aliasing problems
and that the desired speech and noise may be better separated as op-
posed to the frequency-domain methods [6]. A general formulation
of the KLE domain approach and the design of different optimal
filters has been previously proposed in [2] and [6]. In those studies,
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the clean speech signal is estimated from a noisy observation, which
is obtained from a single microphone. It has been shown that a better
noise reduction performance is achieved when properly choosing the
parameters to calculate the filters.

In this study, we explore the possibility of using multiple mi-
crophone signals to improve the performance of the optimal noise
reduction filters in the KLE domain [6]. One possible advantage of
adding more channels, is the potential of extending the noise reduc-
tion problem in the KLE domain into spatial filtering techniques and
being able to further exploit its benefits. We present here a formula-
tion of the multichannel noise reduction problem in the KLE domain.
As an example, we derive an optimal multichannel Wiener filter and
compare its performance in terms of the noise reduction and speech
distortion with that obtained with a single-channel Wiener filter. The
optimal single-channel Wiener filter presented in the example corre-
sponds to the Class I optimal Wiener filter described in [2].

2. PROBLEM FORMULATION

Let us first consider a microphone array with N microphones that
captures a noisy signal y(k), where k is the discrete-time index. The
signals received at each microphone can be thus defined as [7]

yn(k) = xn(k) + vn(k), n = 1, 2, . . . , N, (1)

where xn(k) is the signal of interest and vn(k) is the additive noise
captured by the nth microphone. We assume that xn(k) and vn(k)
are uncorrelated and zero mean. By definition, xn(k) is coherent
across the array and vn(k) is typically only partially coherent across
the array. These signals are considered to be real, broadband and
stationary. The latter is assumed to simplify the development and
analysis of this work. By processing the data by blocks of L samples,
(1) can be expressed in a vector form as

yn(m) = xn(m) + vn(m), n = 1, 2, . . . , N, (2)

where yn(m) = [yn(mL) yn(mL + 1) . . . yn(mL + L − 1)]T ,
the superscript T denotes transpose, m ≥ 0 is the time-frame index,
L is the frame length and xn(m) and vn(m) are defined similarly to
yn(m). Since xn(k) and vn(k) are uncorrelated by assumption, the
L × L correlation matrix of the nth microphone is Ryn = Rxn +
Rvn , where Ryn = E[yn(m)yT

n (m)] is the correlation matrix of
the noisy signal yn(m), Rxn and Rvn are the correlation matrices
of xn(m) and vn(m), respectively, and E[·] denotes mathematical
expectation.

In this paper our desired signal is designated by the clean signal
received at microphone 1, i.e., x1(k)

1. Thus, giving N mixtures of
two uncorrelated signals xn(k) and vn(k), our aim is to preserve

1In principle, any signal xn(k) could be used as the reference.
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x1(k) while minimizing the contribution of the noise terms vn(k) at
the array output [7].

3. KARHUNEN-LOÈVE EXPANSION (KLE)

In this section, we briefly recall the principle of the KLE, which can
be applied to yn(m), xn(m), or vn(m).

Let us first diagonalize the correlation matrix Ryn

QT
nRynQn = Λn, (3)

where Qn = [qn,1 qn,2 . . . qn,L] and Λn = diag(λn,1, λn,2,
. . . , λn,L) are, respectively, orthogonal and diagonal matrices. The
orthonormal vector qn,l is the eigenvector corresponding to the
eigenvalue λn,l.

We can write the vector yn(m) as a combination (expansion) of
the eigenvectors of the correlation matrix Ryn [2] as follows:

yn(m) =
L∑

l=1

cyn,l(m)qn,l, (4)

where
cyn,l(m) = qT

n,lyn(m), l = 1, 2, . . . , L (5)

are the coefficients of the expansion and l is the mode index. The
representation of the random vector yn(m) described by (4) and (5)
is the KLE, where (4) and (5) are, respectively, the synthesis and
analysis part of the expansion [8]. The signals xn(m) and vn(m)
are synthesized and analyzed in a similar way as yn(m). Left mul-
tiplying both sides of (2) by qT

n,l, the time-domain signal model is
transformed into the KLE domain as

cyn,l(m) = cxn,l(m) + cvn,l(m), l = 1, 2, . . . , L. (6)

Thus, the multichannel noise reduction in the KLE domain con-
sists basically of the estimation of the coefficients cx1,l(m), l =
1, 2, . . . , L, from the observations cyn,l(m), n = 1, 2, . . . , N, l =
1, 2, . . . , L.

4. LINEAR ARRAY MODEL

In the KLE domain, we are going to focus on the simplest linear
model for array processing, which is realized by applying a real
weight to the output of each microphone and summing across the
aperture, i.e.,

cz,l(m) =
N∑

n=1

hl,ncyn,l(m)

= hT
l cy:,l(m)

= hT
l cx:,l(m) + hT

l cv:,l(m)

= cxf,l(m) + cvrn,l(m), l = 1, 2, . . . , L, (7)

where cz,l(m) is the estimate of cx1,l(m), hl = [hl,1 hl,2 . . .
hl,N ]T is the weight vector, and cy:,l(m) = [cy1,l(m) cy2,l(m)
. . . cyN ,l(m)]T is a vector containing the observations from all mi-
crophones at time-frame m (the vectors cx:,l(m) and cv:,l(m) are
defined in a similar way). The coefficients cxf,l(m) = hT

l cx:,l(m)
and cvrn,l(m) = hT

l cv:,l(m) are the filtered desired speech signal
and residual noise in the KLE-domain respectively.

At frame m our desired signal is cx1,l(m). However, the vector
cx:,l contains both the desired signal cx1,l(m) and the components
cxi,l(m), i = 2, 3, . . . , N , which are correlated with cx1,l(m). We
should thus decompose cx:,l(m) into two orthogonal components

corresponding to the part of the desired signal and interference, i.e.,

cx:,l(m) = cx1,l(m)γcx:,l
+ c′x:,l(m)

= cxd,l(m) + c′x:,l(m), (8)

where cxd,l(m) = cx1,l(m)γcx:,l
is a signal vector depending on

the desired signal cx1,l(m), c′x:,l(m) = cx:,l(m) − cx1,l(m)γcx:,l

is the interference signal, and

γcx:,l
=

E [cx1,l(m)cx:,l(m)]

E
[
c2x1,l

(m)
] (9)

is the partially normalized cross-correlation vector (of length N ) be-
tween cx1,l(m) and cx:,l. In practice, we can estimate γcx:,l

by

using γcy:,l
and γcv:,l

, which can be estimated during noisy and

noiseless periods.

5. PERFORMANCE MEASURES

We define in this section measures that help us assessing the perfor-
mance of the multichannel noise reduction Wiener filter in the KLE
domain. Before defining the noise reduction factor, it is useful first
to define the signal-to-noise ratio (SNR). Since the signal we want
to recover is the clean signal received at microphone 1, i.e., x1(k),
this signal will serve as the reference signal.

First, we define the mode input SNR as

iSNRl =
φcx1,l

φcv1,l

=
qT
1,lRx1q1,l

qT
1,lRv1q1,l

, l = 1, 2, . . . , L, (10)

where φcx1,l and φcv1,l are the variances of cx1,l(m) and cv1,l(m),
respectively. The fullmode input SNR is thus

iSNR =

∑L
l=1 q

T
1,lRx1q1,l∑L

l=1 q
T
1,lRv1q1,l

=
σ2
x1

σ2
v1

, (11)

where σ2
x1

= E[x2
1(k)] and σ2

v1 = E[v21(k)] are the variances
of x1(k) and v1(k) respectively. It can be shown that iSNR ≤∑L

l=1 iSNRl. The mode output SNR, i.e., the SNR after the filtering

operation, is defined as2

oSNR(hl) =
hT
l Φcxd,l

hl

hT
l Φin,lhl

=
φcx1,l

(
hT
l γcx:,l

)2

hT
l Φin,lhl

, (12)

for l = 1, 2, . . . , L. The matrix Φcxd,l
= E[cxd,l(m)cTxd,l

(m)] =

φcx1,lγcx:,l
γT

cx:,l
is the correlation matrix of cxd,l(m) and Φin,l =

Φcx:,l
− Φcxd,l

+ Φcv:,l
is the interference-plus-noise correlation

matrix. The matrices Φcx:,l
and Φcv:,l

are the correlation matrices
of cx:,l(m) and cv:,l(m) respectively.

The fullmode output SNR is defined as

oSNR(h:) =

∑L
l=1 φcx1,l

(
hT
l γcx:,l

)2

∑L
l=1 h

T
l Φin,lhl

. (13)

The noise reduction factor gives more insight into the noise reduc-
tion performance of the filters [2, 9]. The mode and fullmode noise

2In this study, we consider the interference as part of the noise in the

definitions of the performance measures.
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reduction factors are defined as

ξnr(hl) =
φcv1,l

hT
l Φin,lhl

, l = 1, 2, . . . , L, (14)

ξnr(h:) =

∑L
l=1 φcv1,l∑L

l=1 h
T
l Φin,lhl

. (15)

To evaluate the amount of speech distortion we make use of the mode
and fullmode speech distortion indexes [2, 9], i.e.,

υsd(hl) =

E

{[
cx1,l(m)hT

l γcx:,l
− cx1,l(m)

]2}

φcx1,l

, (16)

υsd(h:) =

∑L
l=1 φcx1,l

(
hT
l γcx:,l

− 1
)2

∑L
l=1 φcx1,l

. (17)

6. WIENER FILTER

By taking the gradient with respect to hl of the mode mean-square
error (MSE), which is defined as

J(hl) = E

{[
hT
l cy:,l(m)− cx1,l(m)

]2}
, (18)

and equating the result to zero, we can derive the multichannel
Wiener filter:

hW,l = Φ−1
cy:,l

Φcx:,l
i1

=
(
IN −Φ−1

cy:,l
Φcx:,l

)
i1 (19)

= φcx1,lΦ
−1
cy:,l

γcx:,l
, (20)

where IN is the N × N identity matrix and i1 corresponds to the
first column of IN . Note that for the particular case of N = 1, the
equation (20) is equivalent to the Wiener filter of Class I described
in [2]. It can be shown that Φcy:,l

= φcx1,lγcx:,l
γT

cx:,l
+ Φin,l,

whose inverse can be determined with the Woodbury’s identity:

Φ−1
cy:,l

= Φ−1
in,l −

Φ−1
in,lγcx:,l

γT
cx:,l

Φ−1
in,l

φ−1
cx1,l + γT

cx:,l
Φ−1

in,lγcx:,l

. (21)

Substituting (21) into (20), we obtain another interesting formulation
of the Wiener filter:

hW,l =
Φ−1

in,lΦcy:,l
− IN

1−N + tr
(
Φ−1

in,lΦcy:,l

)

=
Φ−1

in,lΦcxd,l

1 + λmax,l
i1, (22)

where λmax,l = φcx1,lγ
T
cx:,l

Φ−1
in,lγcx:,l

, l = 1, 2, . . . , L is the

maximum eigenvalue of the matrix Φ−1
in,lΦcxd,l

. From (22) it
can be deduced that the mode output SNR for the wiener filter
is oSNR(hW,l) = λmax,l = tr(Φ−1

in,lΦcy:,l
) − N , and the mode

speech distortion index is a clear function of the mode output SNR:

υsd(hW,l) =
1

[1 + oSNR(hW,l)]
2 . (23)

That is, the higher the value of oSNR(hW,l), the less the desired
signal is distorted. It can be shown that oSNR(hW,l) ≥ iSNRl,
since the Wiener filter maximizes the mode output SNR. The mode

noise reduction factor is

ξnr(hW,l) =
[1 + oSNR(hW,l)]

2

iSNRl · oSNR(hW,l)

≥
[
1 +

1

oSNR(hW,l)

]2

. (24)

The fullmode oSNR is then

oSNR(hW,:) =

∑L
l=1 φcx1,l

oSNR2(hW,l)

[1+oSNR(hW,l)]
2

∑L
l=1 φcx1,l

oSNR(hW,l)

[1+oSNR(hW,l)]
2

. (25)

Property: With the optimal KLE-domain Wiener filter given in (19),
oSNR(hW,:) ≥ iSNR. Given the limitation of space, the proof is not
presented in this paper.

7. EXPERIMENTAL RESULTS

In this section, we present the results of a set of experiments carried
out to evaluate the performance of the multichannel noise reduction
Wiener filter in the KLE domain. The results are compared with the
performance obtained with the single-channel Wiener filter in the
KLE domain, i.e., N = 1.

The clean signal used in the experiments was an anechoic
recording of a female speaker with a length of 35 s. The sampling
rate of the signal is 8 kHz. The clean signal was corrupted by a
coherent noise source and incoherent noise (sensor noise). The co-
herent noise source was an anechoic recording of a different female
speaker. Different coherent noise sources were evaluated during
our studies and results showed similar trends. The incoherent noise
used was low-pass filtered stationary white Gaussian noise. The
noisy signal is then the addition of the clean anechoic speech, the
incoherent and coherent noise.

In the simulations the microphone(s) and sources are located in
a room of dimensions x = 5, y = 6 and z = 4 m. The room’s rever-
beration time was set to 0.6 s. The room impulse responses were cal-
culated using the image method [10]. For the multichannel case, we
simulated an array of four microphones (N = 4) uniformly space
with a distance d = 5 cm between microphones. For the single-
channel case, we used only the reference microphone signal x1(k).
The desired signal was simulated to be located 1 m away from the
array at 40◦ azimuth and 2◦ elevation, where the point (0◦, 0◦) is lo-
cated right in front of the center array. The coherent noise source was
simulated to be located 1.5 m away from the array at −40◦ azimuth
and −2◦ elevation.

The implementation of the optimal noise reduction algorithms
for the single-channel and multichannel cases was done in a similar
fashion as described in [2]. In order to estimate the filter coefficients,
we need to calculate the correlation matrices Φcy:,l

and Φcv:,l
. At

time frame m, the correlation matrix Φcy:,l
is estimated using the

same recursive approach as the one presented in [2], namely

Φcy:,l
= αyΦcy:,l−1 + (1− αy)cy:,l(m) · cTy:,l(m), (26)

where αy is a forgetting factor3. To estimate Φcv:,l
we would need

in practice a noise estimator or a voice activity detector (VAD) to
be able to compute the coefficients cv:,l. In order not to include the
influence of possible errors from the noise estimator or the VAD,
we calculated the coefficients cv:,l directly from the noise signals.
The estimation of Φcv:,l

is done in a similar fashion as in (26)

3The forgetting factors were set to αy = 0.85 and αv = 0.91, which

were found to be optimal in terms of noise reduction and speech distortion.
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Fig. 1. Noise reduction and speech distortion as a function of L
for a desired speech signal corrupted by another speech signal and

stationary white Gaussian noise; iSINR = 10 dB, iSCNR = 15 dB,

RT60 = 0.6 s, and N = 1, 4.

but with a different forgetting factor αv . The performance mea-
sures described in Section 5 were calculated as a function of differ-
ent parameters such as the frame length L, number of microphones
N , input signal-to-coherent-noise ratio (iSCNR) and input signal-
to-incoherent-noise ratio (iSINR), among others. Here we present
some of the results obtained for different frame lengths and the per-
formance as a function of the iSCNR and iSINR.

Figure 1 shows the noise reduction and speech distortion as a
function of the frame length L for the optimal single-channel and
multichannel Wiener filter. It is clear from the figure that the perfor-
mance of the filters is improved when using more microphones. For
the multichannel case, a rather good performance is obtained when L
is around 6 and decreases slightly when L is larger than 8, while for
the single-channel case the frame length does not have a significant
influence in the overall performance.

Figure 2 presents the noise reduction and speech distortion as a
function of iSCNR and iSINR. It is interesting to notice that, in the
presence of coherent noise, the performance of the single-channel
case is in most instances not acceptable (ξnr(hW,:) < 0 dB) when
the iSINR is larger than the iSCNR. On the other hand, the mul-
tichannel case shows a rather stable performance for the different
combinations of iSCNR and iSINR and, in general, the noise reduc-
tion values are significantly larger that those obtained with a single
microphone. Both filters perform similarly with respect to speech
distortion, though there is an improvement when employing multi-
ple microphone signals.

8. CONCLUSIONS

We presented in this paper the multichannel noise reduction problem
in the KLE domain. We formulated the KL transform for multiple re-
ceivers and presented the optimal Wiener filter for this case. Two dif-
ferent performance measures were defined and used to evaluate the
performance of the optimal filters. Experimental results were then
compared with the performance obtained with the optimal single-
channel Wiener filter. The results clearly show an improvement in
performance when employing multiple microphone signals. Addi-
tionally, while the single-channel approach showed to be sensitive to
coherent noise, the multichannel case showed better noise reduction.

Fig. 2. Noise reduction and speech distortion as a function of iSCNR

and iSINR a desired speech signal corrupted by another speech sig-

nal and stationary white Gaussian noise; RT60 = 0.6 s, N = 1, 4,

and L = 6.

We thus believe that there is a great potential for the use of multi-
ple microphone signals to further exploit the advantages of the noise
reduction problem in the KLE domain. The next step would be to
explore the potential benefits of exploiting the correlation between
subsequent time-frames [2].
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