
PREDICTION OF F0 CONTOURS FROM SYMBOLIC AND NUMERICAL VARIABLES
USING CONTINUOUS CONDITIONAL RANDOM FIELDS

Raul Fernandez 1, Steve Minnis 2, Bhuvana Ramabhadran 1

1 IBM TJ Watson Research Center, Yorktown Heights, NY
2 Nuance Communications, Inc., Norwich, UK.

{fernanra,bhuvana}@us.ibm.com, steve.minnis@nuance.com

ABSTRACT

Regression of continuous-valued variables as a function of both cat-
egorical and continuous predictors arises in some areas of speech
processing, such as when predicting prosodic targets in a text-to-
speech system. In this work we investigate the use of Continuous
Conditional Random Fields (CCRF) to conditionally predict F0 tar-
gets from a series of s symbolic and numerical predictive features de-
rived from text. We derive the training equations for the model using
a Least-Squares-Error criterion within a supervised framework, and
evaluate the proposed system using this objective criterion against
other baseline models that can handle mixed inputs, such as regres-
sion trees and ensemble of regression trees.

Index Terms— conditional regression, F0 prediction, speech
synthesis

1. INTRODUCTION

In most text-to-speech (TTS) system architectures, a crucial com-
ponent is responsible for making predictions about what a given
prosodic property of a string of text should be, whether to gener-
ate a driving target that can guide the search through an inventory
of units in a unit-selection system, or to use that prediction directly
as a parameter of the output synthesis. Such predictions need to be
made by examining features derived from the text, typically the only
source of input available at run time, and usually consist of a series
of symbolic attributes (such as syntactical and lexical properties) as
well as numerical attributes (such as positional features) extracted by
a text-analysis module. For real-valued prosodic variables, the mod-
eling task is one of continuous regression from a heterogeneous set
of symbolic and numeric regressors, a problem for which regression
trees provide a well-known solution. In this work, we investigate an
alternative model, continuous conditional random fields (CCRFs),
that can be applied to this task. CCRFs directly provide a conditional
distribution over the sequence of interest, rather than a joint distri-
bution over both output sequence and input features, and therefore
avoid having to model the input distribution directly, which in the
case of heterogeneous symbolic and numeric inputs might prove dif-
ficult. Though CCRFs have been used for document ranking [1], tag
recommendation [2] and remote-sensing [3] problems, their applica-
tion in speech and prosody-modeling tasks remains unexplored. In
Section 2 we review CCRFs and derive the training equations for the
particular parametrization we use in this work using a least-squares
approach. In Section 3 we cover their applicability to F0-modeling
tasks and finally present some experimental results in Section 4.

2. CONTINUOUS CONDITIONAL RANDOM FIELDS

Let y = [y1, · · · , yT ]T be a set of real-valued random variables
associated with an arbitrary input sequence x = {x1, · · · ,xT }
on which we have defined a set of K real-valued feature functions
{f (1)(yt,x)}Kk=1, and a set of L real-valued feature functions on

pairwise observations {f (2)(yt1 , yt2 ,x)}Ll=1. A Continuous Con-
ditional Random Field is a conditional probability density function
with the following general log-linear form [1]

p(y|x;α, β) =
1

Z(x)
exp{E(x,y;α, β)} (1)

E(x,y;α, β) =
T∑

t=1

K∑
k=1

αkf
(1)
k (yt,x) +

T∑
t1,t2=1

L∑
l=1

βlf
(2)
l (yt1 , yt2 ,x) (2)

Z(x) =

∫
RT

exp{E(x,y;α, β)}dy (3)

where α and β are parameters in the model, and Z(x) is the partition
function ensuring a proper probability distribution. In this work we
interpret the indices t = {1, · · · , T} associated with variables x and
y to correspond to a temporally-ordered time series (though in gen-
eral this need not be the case). The model in Eqns. 1-3 can be used
to predict an observation sequence, given a set of input predictors
x, as the maximum a-posteriori estimate ŷ = argmaxy p(y|x).
For arbitrary choices of f (1) and f (2), however, the computation
of the partition function needed for inference and prediction is not
tractable. Though sampling methods, for instance, may be used, we
consider instead the following parametrization of the model in terms
of quadratic feature functions that leads to a posterior in the Gaussian
family, and therefore to an analytically computable MAP estimate:

E(x,y; θ) = −
T∑
t

R∑
r

K∑
k

αrkMr(xt)[yt − γkhk(xt)]
2

−
T∑

t1,t2

L∑
l

βlsl(xt1 ,xt2)[yt1 − yt2 ]
2, (4)

where {hk(xt)}Kk=1 is a set of K real-valued functions of the in-
put at time t; {Mr(xt)}Rr=1 is a set of Boolean feature functions
indicating when the input at time t belongs to one of R nominal
categories; {sl(xt1 ,xt2)}Ll=1 is a set of L real-valued feature func-
tions that measure proximity or closeness between two points in in-
put space; and Z(x) is the corresponding partition function. Be-
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sides the claimed tractability, notice that this parametrization au-
tomatically incorporates a way to handle nominal- and real-valued
properties of the input via the Mr(·) and hk(·) functions respec-
tively, a property that is useful when dealing with regression prob-
lems that make use of a mix of nominal and real-valued regressors.
The parameters θ of the model are the weights αrk and βl, as well
as the scale factors γk, leading to a parameter dimensionality of
RK +K + L. To highlight the two-level component of this model,
we will also refer to Mr(·), hk(·) and sl(·) as the α-Indicators, α-
Features and β-Features respectively. The first term in 4 has the
function of coupling each output to the input sequence whereas the
second term couples pairs of outputs and the input. The CCRF can
be viewed as a graphical model with edges between these pairs of
nodes, and though in general the second sum in Eq. 4 ranges over
1 ≤ t2 ≤ T (defining a fully-connected graphical model with edges
between any pair of output variables), we are interested in a P -order
CCRF where we assume the β-Features are zero outside the range
max(t1 − P, 1) ≤ t2 ≤ min(t1 + P, T ), leading to some sparsity.

After expanding and collecting terms by powers of yt, Eq. 4 can
be expressed as

E(x,y; θ) = −y′(Q+D − S)y + 2b′y + c, (5)

where Q and D are T × T diagonal matrices, S a T × T matrix, b
a T × 1 vector, and c a constant, with entries defined as follows for
i, j ∈ [1, T ]:

Q[ii] =

R∑
r=1

Mr(xi)

K∑
k=1

αrk (6)

D[ii] =

L∑
l=1

βl

T∑
j=1

sl(xi,xj) (7)

S[ij] =

L∑
l=1

βlsl(xi,xj) (8)

b[i] =

K∑
k=1

γkhk(xt)

R∑
r=1

αrkMr(xi) (9)

c = −
T∑

t=1

K∑
k=1

R∑
r=1

αrkγ
2
kMr(xt)h

2
k(xt). (10)

From Eq. 5 we can recognize that the numerator of Eq. 1 is in the
form of an unnormalized Gaussian, and that Z(x) is the normal-
izing Gaussian integral which, provided we impose the constraints
αrk, βl > 0 for the integral to exist, can be evaluated to be

Z(x) = (2π)
T
2 |Σ| 12 exp

{
μ′Σ−1μ

2
+ c

}
, (11)

with μ = (Q+D− S)−1b and Σ = 1
2
(Q+D− S)−1, leading to

a Gaussian conditional posterior p(y|x; θ) = N (y;μ(x),Σ(x), θ)
and therefore to a MAP estimate ŷ(x; θ) = (Q+D−S)−1b (where
we have made the data-dependency explicit this once to highlight the
conditional nature of the model).

2.1. Training

To train a CCRF, we adopt an L2 prediction (or generation) error
minimization framework to make the training phase consistent with
the mean-square error (MSE) criterion we will use to objectively

evaluate the predictions. That is, for a set of training data {x,y}Nn=1

with N sequences, each of length Tn, we seek to minimize

g(θ) =
1

2

N∑
n

e′
nen =

1

2

N∑
n

(A−1
n bn−yn)

′(A−1
n bn−yn) (12)

subject to αrk, βl > 0 (using the shorthand A = Q + D − S).
Since we know no closed-form solution to this problem, we imple-
ment gradient-descent techniques using a log barrier on αrk and βl

to ensure strict positivity. The quantities of interest, then, are the
components of the gradient vector ∇θ given by

∂g(θ)

∂ logαrk
= αrk

∂g(θ)

∂αrk

= αrk

N∑
n

e′
n ×

{
A−1

n
∂bn

∂αrk
−A−1

n
∂Qn

∂αrk
A−1

n bn

}

= αrk

{ N∑
n

(A−1
n bn − yn)

′A−1
n ×

(wrkn − LrnA
−1
n bn)

}
(13)

where we have made use of the following: ∂Qn
∂αrk

= Lrn and
∂bn
∂αrk

= wrkn , with Lrn a Tn × Tn diagonal matrix and wrkn

a Tn × 1 vector with respective entries L
[ii]
r = Mr(xi) and

w
[i]
rk = γkMr(xi)hk(xi). Likewise,

∂g(θ)

∂ log βl
= βl

∂g(θ)

∂βl

= βl

N∑
n

e′
n

(
−A−1

n
∂(Dn − Sn)

∂βl
A−1

n bn

)

= −βl

N∑
n

(A−1
n bn − yn)

′A−1
n RlnA

−1
n bn, (14)

with Rln = ∂Dn
∂βl

− ∂Sn
∂βl

a Tn × Tn matrix with entries

R
[ij]
l =

{ ∑
m �=i sl(xi,xm) : i = j

−sl(xi,xj) : i �= j.
(15)

Finally, the unconstrained gradient with respect to γk is given by

∂g(θ)

∂γk
=

N∑
n

e′
nA

−1
n

∂bn

∂γk
(16)

=

N∑
n

(A−1
n bn − yn)

′A−1
n ukn , (17)

with ukn a Tn×1 vector with entries u
[i]
k = hk(xi)

∑
r αrkMr(xi).

Eqns. 13-17 were used to minimize Eq. 12 using the limited-
memory BFGS quasi-Newton gradient-descent method and the li-
bLBFGS software library implementation [4]. Step size was deter-
mined at every iteration by performing a line-search that met the
strong Wolfe conditions, and the optimization stopped after a maxi-
mum of 20 line-search iterations.

4622



3. FEATURES

Since we are interested in the application of CCRFs to the automatic
generation of F0 contours for text-to-speech (TTS) applications, we
limit the predictor features to those that can be extracted from text
analysis of an input text sequence. Given a dual corpus of text and
corresponding audio waveforms, a TTS front-end (FE) is used to an-
alyze the input text to carry out the usual tokenization, normalization
and baseform generation, and this information is used to force-align
the audio against the input phone sequences using 3-state, left-to-
right hidden Markov models.

Based on the FE analysis, the following strictly hierarchical set
of “structural units” is defined to help with feature definition: phone,
syllable, word, syntax group (or STX-Group), punctuation group (or
P-Group), and sentence. Outside this hierarchy, we also consider the
following two levels: stressed-phone group (or SP-Group), and the
stressed-syllable group or (SS-Group); as the names suggest, they
refer to the span between adjacent stressed phones and syllables, re-
spectively, and subsume only phones. All features are extracted and
assigned at the state level; feature values defined at a broader unit are
propagated down to constituent states (e.g., all states of all phones in
a word would inherit the same word-level attribute).

The set of 35 α-Features include: (a) distance features: number
of states to/from the nearest boundary of each structural domain (12
features) as well as to/from the nearest stressed phone and stressed
syllable, leading to 16 distance features; (b) counts: number of sub-
units subsumed by any structural unit (e.g., #phones in { SP-Group,
syllable, SS-Group, word, STX-Group, P-Group, sentence }; #S-
Group in {P-Group, sentence}, etc.), leading to 17 features; and (c)
2 estimates of word-level pitch-accent (PA) probability: one based
on the PA-ratio introduced in [5], and one based on a text-to-PA pre-
dictor using the CRF-based system described in more detail in [6].

The set of 13 measurements that give rise to the α-Indicators1

include Boolean functions encoding: canonical voicing status of a
phone, consonant-vowel distinction, and word-level membership in
5 pre-defined broad lexical categories (Function Words, WH Words,
Auxiliary Verbs, Conjunctions, and Adpositions). We also con-
sider features encoding place of articulation (9 categories); type of
post-lexical punctuation (6); syllable-level lexical stress (3); part-
of-speech (35); and a 3-way named-entity feature. Additionally,
we employ a novel feature, which gives rise to the STX-Group
mentioned above. The STX-Group is designed to characterize the
observed patterns found in grammatical surface form, where gram-
matical form is determined in chunked units, not dissimilar to those
auto-extracted in statistical machine translation [7]. The Marker Hy-
pothesis [8] is then used as a guide to categorize these chunks, with
the option of further clustering of similar chunks based on patterns
of simple non-recursive syntactic structures. This can reduce the
final number of STX-Groups used in our approach (in this work, we
use a set of size 25. Lexical-semantic features, such as those defined
in our alpha-indicators, are designed to filter these STX-Groups so
that members of a group are semantically homogeneous. In the
future we envision using additional relevant features which describe
the context of the STX-Groups, such as paragraph, sentence or list
markup, as well as word class semantic similarity measures.

Finally, the β-Features sl(xt1 ,xt2) in 4 are defined so as to
encode a notion of proximity in input space, and use this quantity
to weigh the output-difference term (yt1 − yt2)

2. Intuitively, this

1Notice that R in Eqn. 4 is not the number of such measurements, but
the overall cardinality of their value sets R =

∑
j |Vj |. In other words,

there is an indicator Mr(·) for each value in the domain of each of these
measurements.

component of the model gives us a handle to control smoothness by
downplaying output differences when these correspond to inputs that
are farther from each other. A function that has this simple property
is a symmetric Gaussian kernel of the form:

sl(xt1 ,xt2) = exp

(
Il(t2)− Il(t1)

σ2
l

)
, (18)

where Il(t) is a function associating an index across some dimension
l to the sample at time t (e.g., the third phone of the second syllable
in the first word, etc.). In this work, we measure this proximity along
L = 7 different time scales (the state level, plus the 6-level hierarchy
defined above) and use Eqn. 18 to map an absolute distance along
each scale to the interval [0, 1] with free scale parameter σl.

4. EXPERIMENTS AND RESULTS

Experiments were conducted based on a dual corpus containing
approximately 10 hours of read speech, aligned as previously de-
scribed. log(F0) contours were extracted using Praat and interpo-
lated to obtain a continuous curve throughout all non-silence regions.
Since the data contains several speakers, the log(F0) observations
were speaker-normalized to obtain speaker-independent log(F0) z-
scores. The features described in Section 3 were extracted for each
state-level unit and paired with the z-score value from the state’s
mid-point to form a dataset, of which 70% was used for training and
15% reserved for each of a development and testing sets.

We investigated the performance of CCRF models with respect
to the baseline performance of regression trees (RTs) since they are
widely-adopted models when dealing with regression from nominal
and numerical predictors (and are commonly used in language and
speech applications). Additionally, we investigated the performance
of single models (in each model class) with respect to the perfor-
mance of an ensemble since averaging ensemble methods often lead
to a boosted performance over single models. For RTs, in particular,
we adopted building randomized forests of regression trees [9], an
ensemble methodology that has been shown to behave robustly to
overfitting and exhibit state-of-the-art performance in many regres-
sion problems [10]. Both the single and random trees were grown
subject to the following stopping criteria: a minimum number of
70 observations per leaf, and a minimum RMS tolerance per node
of 10% (e.g., the percent of the training set’s RMS). All trees were
fully grown and then pruned, and a forest of 25 trees was grown
considering only a random draw of 50% of all available variables at
each node split. The feature set consisted of those predictors already
described in Section 3 for each time sample (state), augmented by a
context window of two time samples on either side.

To create a CCRF ensemble, 25 models were built by drawing
with replacement a subset of the α-Indicators (4 randomly chosen
out of 13), α-Features (7/35) and β-Features (4/7) available for each
training sample (plus a context of two training samples on either
side) when training each model. The scale parameter was randomly
drawn from the set σl = {0.5, 1.0}. This process significantly re-
duces the dimensionality of the input space in which the optimiza-
tion takes place (since this dimensionality increases as the product
R×K), and speeds up the learning process with respect to the train-
ing time of a single model built on all the features at once. We carried
out only some preliminary experiments with CCRF order, selecting
to build models of order P = 6 after seeing comparable results on
the development set for orders P = 3 and 6.

Results of these experiments are reported on Table 1 for the test
set. Looking at the rows of this table, we see a noticeable relative
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RegTree CCRF
Relative Error

Reduction

Single Model .3236 .2790 +13.78%

Ensemble .3194±.0013 .2864±.0017 +10.33%

Fusion .2797 .2835 -1.3%

Fusion Relative
+13.57% -1.61%

Error Reduction

Table 1. Absolute mean-squared error and relative error reduction
between different models on the testing set.

reduction in the MSE of a single, global CCRF model with respect
to the single regression tree built on the full feature set (13.78%).
When we look at the distribution of MSE across members of each
ensemble, we also observe that, on the average, randomly-built
CCRFs outperform randomly-built regression trees in relative error
by 10.33%. However, when the outputs of each of these ensem-
bles are fused by ensemble average, regression trees outperform
the CCRF fused output by 1.3%. It would seem that in spite of
lagging behind when it comes to single-model performance, the
trees may be benefiting from higher complementarity among the
outputs to produce a noticeable ensemble gain over single-model
trees and ensemble CCRFs. To verify this, we examined the cross-
correlation coefficient ρij between the predictions ŷi and ŷj of any
two members within each ensemble. This is plotted in Fig. 1 for
1 ≤ i, j ≤ 25. The strongly diagonal structure of the top of this fig-
ure confirms that each of the outputs of the tree ensemble is strongly
uncorrelated with the remaining ensemble outputs, so that system
combination leads to a considerable relative improvement (13.57%).
In contrast, the lower panel shows how the CCRF ensemble outputs
strongly correlate with each other, so that no gains are observed
when we try to exploit CCRFs in the ensemble scheme. Instead
we see a drop with respect to the best single-model CCRF output
of 1.61%. (This behavior was persistent even when we trained a
model with mutually exclusive feature subsets to attempt to reduce
redundancy in the input and hope for more uncorrelated outputs.)
One weakness in the ensemble training of CCRFs is that there is no
explicit criterion to ensure diversity among the different members:
each predictor is trained independently to minimize MSE on the fea-
ture subset available to it at the beginning of training. Random trees,
on the other hand, though also lacking such an explicit criterion,
manage to (i) have access in principle, and therefore to potentially
exploit, the full feature set during the entire training procedure while
(ii) injecting randomization at every split by considering only a finite
subset of this set. The CCRF training we implemented, however,
limits the view of the data of each member from the start by training
on a fixed subset. Our ongoing work focuses on modifying the
training of ensemble models to directly incorporate diversity among
them in the optimization criterion and investigate whether such
techniques can lead to gains over single models and tree ensembles.
Overall, the best numerical result was obtained with a single CCRF,
though its performance is not significantly different from that of the
fused output of a tree ensemble.

5. CONCLUSIONS

In this work we applied CCRFs to time-series prediction from cate-
gorical and numerical variables using a minimum MSE training cri-
terion, and applied them to the task of modeling F0 contours from
text with the goal of exploiting them in text-to-speech applications
that can make use of a prosody-generation module. To our knowl-
edge, the investigation of CCRFs for prosody modeling and speech

Fig. 1. Matrix of pair-wise cross-correlation coefficients ρ for tree
and CCRF ensembles.

synthesis, and the training procedure presented here, are novel con-
tributions. We showed that individual CCRFs exhibit significant
gains (of more than 10% relative MSE reduction) when compared
with a single regression tree and with randomly grown regression
trees, and that a single model’s performance is comparable to that
obtained with an ensemble of regression trees. When we investigated
further enhancing this initial gain by using CCRFs within ensemble
methods, however, we observed a high degree of correlation among
member outputs, leading to small loss in performance over a single
CCRF and tree ensembles. Our ongoing and future work is two-fold:
to overcome this limitation by directly incorporating into the training
procedure notions of diversity among ensemble members, and ex-
panding the training criterion to incorporate other performance met-
rics, beyond MSE, that might be relevant to the particular domain
of speech synthesis and that address known perceptually desirable
properties of the output (such as smoothness, global variance, etc.).
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