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ABSTRACT
In this paper, we propose a confidence measure for the

pitch estimation method presented in a parallel paper [1]. The

confidence measure is derived based on a sparse represen-

tation of the speech harmonic structure. The measurement

quantitatively reflects the harmonicity associated with an es-

timated pitch. It is used to indicate the reliability of the re-

sults. Histogram is employed to illustrate the distribution of

the measurement obtained from speech signals at low signal-

to-noise ratios. It is shown that with the confidence measure,

correct results can be effectively identified. By using the con-

fidence measure, an adaptive algorithm for pitch estimation

is proposed. Reliable pitch values obtained from preceding

estimations are identified and used to predict the local pitch

range for subsequent estimations. Parameter of the estimation

algorithm is dynamically adjusted according to the predicted

pitch range. Experimental results show that with the adaptive

algorithm, pitch estimation accuracy is noticeably improved.

Index Terms— Robust pitch estimation, confidence mea-

sure, sparse representation, pitch range prediction

1. INTRODUCTION
Automatic determination of the fundamental frequency, i.e.,

pitch or F0, in noisy speech is an important basic problem

for speech enhancement, robust speech recognition and many

other areas of speech research. The most commonly used ap-

proach towards robust pitch estimation is to use complemen-

tary pitch cues [2, 3, 4]. However, the estimation accuracy is

generally considered unsatisfactory, particularly when signal-

to-noise ratio (SNR) is low. Besides, a common shortcoming

of most existing methods is the absence of confidence mea-

sures for evaluating the reliability of the estimation results.

An effective confidence measure can be largely benefi-

cial. The measurement can be used to identify estimation

errors and thus enable subsequent process, e.g., speech en-

hancement, to prevent the errors from degrading system per-

formance. With the confidence measure, pitch estimation ac-

curacy can be improved. For instance, isolated pitch errors

can be spotted and corrected. Moreover, the measurement can

be used to indicate voicing status and hence can contribute to

robust voiced/unvoiced decision (VUD) and voice activity de-

tection (VAD).

In a parallel paper [1], we present a novel pitch estimation

method for improving pitch estimation accuracy at low SNRs.

Sparsity-related estimation approach [5, 6] is employed in the

method. In this extension study, we propose a confidence

measure for evaluating the reliability of the estimation results.

In the following, we will try to motivate the confidence

measure by a brief review of the pitch estimation method.

Pitch is estimated based on a temporal-spectral representation

of the speech harmonic structure, namely temporally accumu-
lated peak spectrum (TAPS). TAPS of the kth frame, y(k), is

computed by

y(k) = p(k−�K
2 �)+ · · ·+p(k) + · · ·+p(k−�K

2 �+K−1), (1)

where p(k) ∈ RM×1 is the peak spectrum vector obtained by

retaining the peaks of the DFT magnitude spectrum and set-

ting the other magnitudes to zero [7]. If p(k) covers the full

spectrum, then M equals the number of frequency bins. In

Eq. (1), �·� is the floor function, “+” is entry-wise addition

and K is the number of accumulated frames. Since pitch usu-

ally changes slowly in neighboring frames, in y(k), harmonic-

related peaks are concentrated around the fundamental fre-

quency and its multiples. On the other hand, noise peaks in

y(k) are irregularly located and relatively small. A degree of

robustness against noise can be gained [7].

In addition, prior speech information is utilized. Prior

knowledge is incorporated as a large set of peak spectrum ex-

emplars obtained from clean voiced speech. The exemplars

over-completely represent all possible pitch values. An infor-

mation matrix A = [p̄1 p̄2 · · · p̄N ], where A ∈ RM×N

and N � M , is composed from the exemplars. Each column

of A represents a peak spectrum exemplar. An accumulated

peak spectrum y is then assumed to be represented as a sparse

linear combination of the exemplars, i.e.,

y = Ax + v, (2)

where x ∈ RN×1 is a sparse weight vector with at most K
non-zero elements. v represents the noise effect in the peak

spectrum domain. With Gaussian assumption on the prob-

ability distribution of v, x can be effectively estimated in a

maximum likelihood sense [8]. Based on x, the pitch is de-

termined. The algorithm for obtaining x is provided in Ap-

pendix 1 for the convenience of the reader.

2. CONFIDENCE MEASURE FOR PITCH
ESTIMATION

2.1. Voting weights
Let x̂ = [x̂1x̂2 · · · x̂n · · · x̂N ]T denote the estimated weight

vector. Each non-zero element in x̂ identifies a constituent

exemplar for y. Since a peak spectrum exemplar p̄n indicates

a pitch value f0(n), all the constituent exemplars suggest a

set of pitch candidates {f0
c(1) · · · f0

c(nf ) · · · f0
c(Nf )}.
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There may be multiple constituent exemplars corresponding

to a same pitch candidate. In practice, we also merge close

pitch values via averaging to form a single candidate. For the

candidate f0
c(nf ), a voting weight x̂c

nf
is proposed as the

sum of all associated non-zero elements in x̂, i.e.,

x̂c
nf

=
∑

1≤n≤N
x̂n>0

f0(n)=fc
0(nf )

x̂n. (3)

The voting weights play an important role of identifying the

major constituent exemplar(s). The fundamental frequency is

determined from the dominant one(s). The candidate with the

largest voting weight is selected as the estimated pitch f̂0. Let

n∗
f = argmax

nf

x̂c
nf

, (4)

then the pitch is estimated as

f̂0 = f c
0(n∗

f ). (5)

Experimental comparison of the above method with con-

ventional methods of robust pitch estimation is provided in

[1]. It is shown that the above method can attend high estima-

tion accuracy, especially at low SNRs.

2.2. The confidence measure
Numerical value of the largest voting weight x̂c

n∗
f

provides an

useful clue for evaluating the estimation result. A further in-

sight can be gained from the sparse representation as in Eq.

(2). In y of voiced speech, harmonic-related peaks are con-

centrated around the fundamental frequency and its multiples.

In terms of the sparse representation, most of the non-zero el-

ements in x̂ are expected to denote exemplars with the same

or close pitch values. Therefore, if the sparse weight is cor-

rectly estimated, most of the non-zero elements in x̂ should

contribute to x̂c
n∗

f
and x̂c

n∗
f

should be large. For incorrect re-

sults, it is observed that the sparse weight vector usually de-

notes exemplars with diverse pitch values. As a result, fewer

non-zero elements in x̂ contribute to x̂c
n∗

f
and x̂c

n∗
f

is small.

Similar situation is also observed with the unvoiced speech.

Usually, when voicing status of the noisy speech is unknown,

“pitch values” are also computed for the unvoiced frames. It

will be beneficial if these “meaningless” results can be recog-

nized. This is achievable by using x̂c
n∗

f
as an indication. For

unvoiced speech, there is no harmonic peak in y. With the

same estimation, the obtained x̂ normally denotes exemplars

with different pitch values, and the corresponding x̂c
n∗

f
turns

out to be relatively small as well.

The value of x̂c
n∗

f
shows a high correlation to the correct-

ness or reliability of the estimated pitch. We use x̂c
n∗

f
as an

index for evaluating the result. Based on x̂c
n∗

f
, a confidence

measure is proposed. It is computed by

PF0 =
x̂c

n∗
f∑

nf
x̂c

nf

=
x̂c

n∗
f∑

n x̂n
. (6)

In Eq. (6), the normalization ensures that 0 < PF0 ≤ 1. If

PF0 is large, then f̂0 is likely to be a correct result and the
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Fig. 1: Pitch estimation results and corresponding PF0 values

estimation is reliable. When PF0 equals 1, all the non-zero

elements in x̂ vote for the same pitch value. We treat that as

the most confident estimation. If PF0 is small, then f̂0 may

be incorrect or the signal may be unvoiced.

Fig. 1 shows an example of PF0 computed from real

speech data. The upper figure shows, in an overlap manner,

a clean speech segment (blue) and its counterpart (back) cor-

rupted by 0 dB white noise. The reference pitch track and the

pitch track estimated from the noisy signal are also illustrated.

The lower figure shows the curve of PF0 obtained during the

process of pitch estimation in the noisy signal. It can be seen

that for the correct results, PF0 is large and mostly close to

1. For the errors, PF0 is small. It is also shown that for the

unvoiced, PF0 is small as well.

2.3. Histogram analysis
We further conduct a statistical analysis on PF0. We use his-

togram to illustrate the distributions of the numerical values

of PF0 for voiced frames and unvoiced frames at different

SNRs. For voiced frames, the values of PF0 for two types

of results are also investigated in accordance with two perfor-

mance metrics for pitch estimation: gross pitch error (GPE)

and fine pitch error (FPE) [9]. For FPE, estimated pitch is

within a close neighborhood (±16 Hz) of the true ones and it

is treated as correct estimation, while GPE is on the contrary.

For the analysis, 80 utterances from 5 male and 5 female

speakers are used. They are a subset of the CSLU-VOICES

corpus [10]. The utterances were down-sampled to 8 kHz.

Half of the utterances are used to train the parameters for the

estimation algorithm, i.e., A, μ and Σ for (7) [1]. The other

40 are used for the following analysis. White noise is gener-

ated by software and added to the utterances. For each signal

frame, y is computed and the sparse weight x̂ is estimated us-

ing (7). Based on x̂, the pitch is estimated and the correspond-

ing PF0 is computed as described above. For voiced frames,

the estimated pitch values are compared with the true ones.

Accordingly, the PF0 results are divided into two groups, i.e.,

the FPE group and the GEP group.

For a group of PF0 results, a histogram is generated by

counting the occurrences of the specific PF0 values. Fig. 2

shows the histograms of the FPE, GPE and unvoiced groups at
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(a) Clean speech (b) Noisy speech (white noise, 0 dB) (c) Noisy speech (white noise, −5 dB)

Fig. 2: Histograms for the distributions of PF0. (Histograms of the unvoiced group are normalized by the total number of unvoiced frames.
Histograms of the GPE and FPE groups are normalized by the total number of voiced frames.)

Table 1: Optimal decision boundaries and corresponding accuracies

Task
Clean 0 dB −5 dB

BND ACC BND ACC BND ACC

FPE vs (GPE+U) 0.62 91.5% 0.52 85.9% 0.50 83.1%

FPE vs GPE 0.35 97.7% 0.37 94.5% 0.31 91.3%

different SNRs. The histograms obtained from clean speech

are given in Fig. 2a. It can be seen that PF0 values of the FPEs

are large and the majority is close to 1. For the GPEs and the

unvoiced frames, most of the PF0 values are small. Fig. 2b

and 2c show the histograms obtained from noisy speech. It

can be seen that PF0 values of the unvoiced frames tend to

follow a same distribution. For the FPEs, although the PF0

values generally become smaller when SNR decreases, the

majority is still large and discriminable from the other groups.

Following, we quantitatively analyze the discrimination level.

Consider two decision tasks: (1) Given PF0 of a frame,

decide the corresponding estimated pitch is FPE or not (FPE
vs (GPE+U)); (2) For a voiced frame, given PF0, decide

the corresponding estimated pitch is FPE or GPE (FPE vs
GPE). From the above histograms, we can obtain optimal

PF0 boundaries, with which the decision accuracies (on the

analyzed data) for the respective tasks are the highest. The

highest accuracies quantitatively reflects the discrimination

levels of the respective groups. Table 1 gives the optimal

boundaries (BND) and the corresponding accuracies (ACC).

It can be seen that the discrimination levels are consistently

high, even at low SNRs. It infers that based on PF0, the cor-

rect results (FPE) can indeed be effectively identified.

3. ADAPTIVE PITCH ESTIMATION
3.1. Parameter adaptation
We demonstrate usefulness of the confidence measure by an

application. Here, PF0 is used to identify reliable estimation

results for further reduction of estimation errors. Specifically,

an estimated pitch is recognized as reliable if the correspond-

ing PF0 is larger than a threshold. Recent reliable pitch val-

ues are used to predict the local pitch range for subsequent

estimations. With the predicted pitch range, the prior infor-

mation matrix A is dynamically adjusted to cover the local

pitch range. The adjusted information matrix is then used in

the subsequent estimation. The adaptation of A is potentially

beneficial. This is because originally A is designed to repre-

sent all possible pitch values [1]. However, for a local speech

Table 2: Pitch estimation algorithm with adaptive parameter

Require:
A The complete prior information matrix;

NC Number of cached results;
Nmin

R Minimum number of reliable results for predicting
the local pitch range, Nmin

R ≤ NC;
P th

F0 PF0 threshold for identifying the reliable results.

Initial a queue Q of length NC, Q← 0, 0, · · · , 0
for each frame in the noisy speech do

if Q.NumberOfNonZeroElements() ≥ Nmin
R then

F0min ← min(Q.NonZeroElements())− C
F0max ← max(Q.NonZeroElements()) + C
Aloc ← From A select the exemplars whose F0
within [F0min F0max]

else
Aloc ← A

end if
Compute y using Eq. (1)
Estimate the sparse weigh x with Aloc using (7)

Obtain f̂0 using Eq. (3), (4) and (5)
Compute PF0 using Eq. (6).
if PF0 ≥ P th

F0 then
Q.Enqueue(f̂0)

else
Q.Enqueue(0)

end if
end for

segment, the pitch is usually within a relative narrow range. A

compact A is helpful for improving estimation accuracy, e.g.,

pitch errors such as doubling and halving can be avoided.

Table 2 shows the adaptive algorithm. In the algorithm,

local pitch range is predicted as the range between the mini-

mum and maximum (extended by C Hz) of the recent reliable

results. If there is not enough reliable results, the algorithm

falls back to the original one, i.e., the complete A is used.

3.2. Evaluation
Performance of the adaptive algorithm (Adpt) is evaluated

and compared with the original algorithm (Orig) where A
is complete and fixed. A previously proposed approach

[7], where pitch is estimated from the autocorrelation of y
(AutoC), is also involved in the comparison. The 40 ut-

terances for the above histogram analysis are also used for

this evaluation. Three types of noise, i.e., white noise, non-

stationary (NS) white noise and car noise, are used. NS-white

noise was obtained by randomly changing the variance of

white noise every 8 ms in the range of [σ2, 5σ2] with σ2 = 1.
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Fig. 3: GPE and FPE results of the compared methods.

Car noise (VOLVO-340, 120 km/h) was obtained from the

NOISEX-92 data set. The parameters, A, μ and Σ, trained

for the histogram analysis are also used. The number of ex-

emplars in A is N = 1024. The dimension of peak spectrum

vector is M = 102, covering the frequency range of 0 Hz to

800 Hz. For the Adpt algorithm as in Table 2, we empirically

set NC = 10, Nmin
R = 5, P th

F0 = 0.70 and C = 30 Hz.

The speech signals are degraded with noise at various

SNRs. The pitch is estimated and compared with the refer-

ence pitch, which is obtained via manually labeling the clean

waveforms. For GPE, the error rate in percentage is calcu-

lated. For FPE, the root mean square (RMS) of the estimation

deviation is computed [1, 9]. Fig. 3 shows the GPE and FPE

results. It can be seen that with the Adpt algorithm, estima-

tion accuracy is noticeably improved, specially at low SNRs.

GPE rates of the Adpt algorithm are the lowest for all SNR

conditions. Moreover, the average FPE result of the Adpt
algorithm is 0.62 Hz lower than that of the Orig algorithm.

The improvement confirms the effectiveness of using preced-

ing reliable results and infers that the reliable pitch results are

indeed effectively identified.

4. CONCLUSIONS
A confidence measure has been proposed to evaluate the es-

timation results of a new pitch estimation method. The mea-

surements effectively reflect the reliability of the estimation

results. Histogram analysis confirms that with the confidence

measure, correct results (FPE) can be effectively discrimi-

nated from gross errors and those estimated from unvoiced

speech. By using the confidence measure, an adaptive algo-

rithm for pitch estimation was established. With the adaptive

method, pitch estimation accuracy was noticeably improved.

The improvement confirms usefulness of the confidence mea-

sure. As for further application, the confidence measurement

can be used in existing VUD and VAD algorithms to improve

detection accuracy at low SNRs.
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Appendix 1. SPARSE WEIGHT ESTIMATION
Given the probability density function of v as ϕ(v) =
N (v; μ,Σ), the maximum likelihood (ML) estimation of

x for Eq. (2) can be obtained by minimizing the negative log-

likelihood function − log ϕ(y − Ax). Consider the sparsity

constraint on x, an l1 regularization term is imposed [1]. The

l1-regularized ML estimation of x is obtained by

min
x

(Ax − y + μ)T Σ−1(Ax − y + μ)

subject to ‖x‖1 ≤ K and x > 0.
(7)
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