
PUNCTUATION GENERATION INSPIRED LINGUISTIC FEATURES FOR MANDARIN 
PROSODIC BOUNDARY PREDICTION 

 
Chen-Yu Chiang, Yih-Ru Wang and Sin-Horng Chen 

 
Institute of Communication Engineering, National Chiao Tung University 

 
ABSTRACT 

A novel statistical linguistic feature, called punctuation confidence, 
is proposed in this paper for assisting in prosodic break prediction 
in Mandarin text-to-speech. The punctuation confidence calculated 
from the input text is a measure of the likelihood of inserting a 
major PM at a word boundary. Since a punctuation in text tends to 
be pronounced as a break, the punctuation confidence associated 
with a punctuation estimate should provide useful information for 
break prediction from text. The idea is realized in this study by first 
employing a conditional random field (CRF)-based model to 
generate a predicted punctuation and its associated punctuation 
confidence for each word boundary. Then, the predicted 
punctuation and its punctuation confidence are combined with 
contextual linguistic features to predict the break type of the word 
boundary by an MLP (multi-layer perceptrons). Experiment on the 
Treebank speech corpus confirmed the effectiveness of the 
proposed approach.  
Index terms — punctuation confidence, text-to-speech, prosodic 
break, punctuation generation, conditional random field 
 

1. INTRODUCTION 
Prosodic phrase boundary (or prosodic break) prediction from text 
plays a very important role in an unlimited text-to-speech (TTS) 
system. Proper prosodic break prediction would make the 
synthesized speech sound more natural and more intelligent in 
terms of intonation and rhythm without losing or destroying the 
original meaning of the text. Previous break prediction studies 
mainly focused on the following two issues: (1) Design or 
utilization of prediction model, and (2) Utilization of features. In 
the first issue, many prediction models have been proposed, 
including hierarchical stochastic model [1], N-gram model [2], 
classification and regression tree (CART) [3,4], bottom-up/sifting 
hierarchical CART [3], Markov model [5], artificial neural 
networks [6], maximum entropy model [7], etc. In the second issue, 
some shallow linguistic features, such as part of speech (POS), 
word length, sentence length, position in a sentence, etc., are very 
basic and popularly used. To further improve break prediction 
accuracy, many studies adopted higher level syntactic features, 
such as word chunk [6] and syntactic tree [6]. On the other hand, a 
statistical feature - connective degree (CD) [8] was proposed to 
neglect complex syntactic parsing that causes impracticality in 
constructing an unlimited TTS system. 

This paper focuses on the second issue to propose a statistical 
linguistic feature called punctuation confidence which is motivated 
by automatic Chinese punctuation generation [9] and linguistic 
characteristic of Chinese punctuation system [10]. In [9], a 
maximum entropy (ME)-based automatic Chinese punctuation 
generation method was proposed to insert 16 types of punctuation 
mark (PM) to an un-punctuated text by using features of word and 

lexical-functional grammar (LFG) features. The results in [9] 
showed that the punctuation generation model can generate 
alternative/ acceptable insertion, deletion or substitution PMs. This 
phenomenon was also observed in a human punctuation 
experiment reported by Tseng [10] in which alternative 
punctuation strategies were found among different native Mandarin 
Chinese speakers. These observations reflect a fact that Chinese 
PMs serve as a loose reference to both syntactic structure and 
semantic domain, and therefore native Chinese writers would 
freely utilize PMs to delimit written Chinese into various linguistic 
elements, such as phrases and clauses, so as to clearly express the 
meaning of a text. Furthermore, punctuation generation of a 
speaker when reading written Chinese would reflect his/her 
prosodic phrasing strategy because pause break is highly correlated 
with punctuation. Therefore, an automatic punctuation generation 
model trained from a large text corpus may provide useful cues for 
prosodic break prediction. 

In this study, a conditional random field (CRF)-based 
automatic punctuation generation model is constructed to predict 
punctuation and generate the associated confidence measure, 
referred to as punctuation confidence, from PM-removed 
word/POS sequences. The punctuation confidence can be regarded 
as a statistical linguistic feature to measure the likelihood of 
inserting a major PM into the text. It is reasonable to hypothesize 
that word junctures which are more likely to be inserted with major 
PMs in text, are more likely to be inserted with pause breaks in 
utterance. We can therefore use the punctuation confidence to help 
prosodic break prediction. Several advantages of the approach can 
be found. First, the punctuation confidence can be easily obtained 
from features of word/POS sequence which can be robustly 
obtained by current word segmentation and POS tagging 
technologies without using complicated statistical syntactic parsing. 
This makes the proposed approach more suitable for practical on-
line unlimited TTS. Second, as trained using a large text corpus, 
the CRF-based punctuation generation model can learn alternative 
punctuation strategies from numerous paragraphs by various 
writers so as to generate more reliable punctuation confidence. 
Third, compared with the size of an available text corpus parsed 
with syntactic tree for constructing a statistical syntactic parser, the 
size of corpus used to train the CRF-based punctuation generator 
can be considerably larger. Therefore, we can expect that the 
punctuation confidence would be more robust than syntactic 
features derived from an automatic syntactic parser. 

This paper is organized as follows. Section 2 introduces the 
experiment database and its prosody labeling. The relationship 
between prosodic breaks and PMs are illustrated. The proposed 
method is presented in Section 3. Section 4 discusses the 
experimental results. Some conclusions are given in the last section. 
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2. PROSODY LABELING OF SPEECH CORPUS 
A read Mandarin speech database uttered by a female professional 
announcer was used to evaluate the proposed approach to prosodic 
break prediction. Its associated texts were all short paragraphs 
composed of several sentences selected from the Sinica Treebank 
Version 3.0 [11]. The database is further divided into two parts: a 
training set consisting of 376 utterances with 51,868 syllables and 
a test set consisting of 46 utterances with 4801 syllables. 

2.1. Prosody labeling of the speech corpus 
The corpus was labeled with seven break types by the PLM 
algorithm [12] proposed previous. As shown in Fig. 1, the seven 
break types, i.e. {B0, B1, B2-1, B2-2, B2-3, B3, B4}, delimit an 
utterance into a four types of prosodic units, namely syllable (SYL), 
prosodic word (PW), prosodic phrase (PPh), and breathe 
group/prosodic phrase group (BG/PG). 
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Fig. 1.  The prosody-hierarchy model of Mandarin speech used in 
this study [12] 

In the labeling system, each defined break type is characterized by 
its specific juncture prosodic-acoustic features: B4 is defined as a 
major break accompanying long pause and apparent F0 reset across 
adjacent syllables; B3 is a major break with medium pause and 
medium F0 reset; B0 and B1 represent respectively non-breaks of 
tightly-coupling syllable juncture and normal syllable boundary, 
within a PW, which have no identifiable pauses between SYLs; 
and B2 is a minor break with three variants: F0 reset (B2-1), short 
pause (B2-2), or pre-boundary syllable duration lengthening (B2-3). 

2.2. Analysis on prosody labeling 
2.2.1. Prosodic-acoustic features of the labeled break types 
Among various types of prosodic-acoustic features, pause duration 
is the most salient cue to specify boundaries of prosodic units. 
Therefore, this study aims to improve the break prediction 
accuracy of those pause-related break types, i.e. B4, B3, and B2-2. 
Fig. 2 displays the distributions of pause duration for the seven 
break types. As can be seen from the figure, the break types of 
higher level were generally associated with longer pause duration. 
Notice that B4, B3 and B2-2 have apparent pause duration (>30ms), 
while B0, B1, B2-1 and B2-3 all have very short pause duration 
(<30ms). By the above analysis on the pause durations of the seven 
break types, this study defines four break prediction targets, 
including (1) B4, (2) B3, (3) B2-2, and (4) non-pause break type 
(NPB) which is a grouping of B0, B1, B2-1 and B2-3. 
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Fig. 2: The pdfs of pause duration. Numbers in () denote the mean 
values in ms. 

2.2.2. Relationship between the labeled break types and PM types 
It is generally agreed that pause breaks co-occur with PMs. 
Therefore, most TTSs cautiously insert pause only on major PMs, 
such as comma and period. This cautious strategy of pause 
insertion can make the synthesized speech very stable, but may be 
unnatural as the input sentence is very long. Table 1 shows the co-
occurrence matrix of four target break types and three syllable 
juncture types calculated from the training set. It can be seen from 
the table that most PM locations co-occur with pause-related break 
type (B2-2, B3 and B4), while most intra-word locations map to 
NPB. In-between PM and intra-word, non-PM inter-word locations 
co-occur with NPB, B2-2 and B3. Actually, about 40% of prosodic 
phrase boundaries (B3s) and over 94% of B2-2 come from non-PM 
inter-word junctures. By more detail analysis, we find that 60% of 
non-PM B3s coincide with depth-1 node boundary of full parsed 
syntactic tree. The above discussions imply that it would be 
unsatisfactory to insert prosodic pause breaks only at PM locations. 
The study hence tries to overcome this shortage.  
 
Table 1: Co-occurrence matrix of four target break types and three 
syllable juncture types. 

 NPB B2-2 B3 B4 
Intra-word 21,970 14 2 0 

Non-PM inter-word 20,288 3,148 1,391 30 
PM 30 169 2,130 2,320 

 
Table 2 shows the co-occurrence matrix of four target break types 
and 8 PM types. It can be found from the table that the major PM 
set {period ‘ ’, exclamation mark ‘ ’, question mark ‘ ’, 
semicolon ‘ ’, colon ‘ ’, comma ‘ ’} is highly correlated with 
major breaks, i.e., B3 and B4. This implies that a word juncture 
which tends to insert major PM in text is more likely to be a major 
break in utterance. This motivates us in this study to propose a 
CRF-based automatic punctuation generator to predict the 
insertion of major PM (i.e., punctuation) and its likelihood (i.e., 
punctuation confidence) for each word juncture from an 
unpunctuated text, and use them to help the break prediction. 
 
Table 2: Correlation matrix of 4 break types and 8 PM types 

 
        

NPB 1 0 0 0 0 4 25 1 
B2-2 2 1 1 0 1 88 75 1 

B3 42 1 7 9 2 1,901 168 0 
B4 606 39 58 63 0 1,523 30 1 

 
3. THE PROPOSED METHOD 

Fig.3 shows a diagram of the proposed break prediction scheme. 
As shown in the figure, the scheme contains four components, 
including (1) Word and POS Tagger, (2) CRF-based Punctuation 
Generator, (3) Context Analyzer, and (4) MLP (multi-layer 
perceptrons) Break Predictor. It is noted that the predicted 
punctuation and punctuation confidence are extra information in 
the feature vector (in addition to the contextual linguistic features) 
to help the break prediction. The system is operated as follows. 
First, the input raw text is segmented into word sequence with POS 
labeling by the Word and POS Tagger. Then, the CRF-based 
Punctuation Generator determines the presence/absence of 
punctuation and generates the associated punctuation confidence 
from the input PM-removed word and POS sequence. Last, the 
MLP Break Predictor determines the break type of each word 
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juncture using the feature vector which consists of the predicted 
punctuation, the punctuation confidence, and the contextual 
linguistic features formed by the Context Analyzer using the 
sequences of PM, word and POS.  
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MLP Break Predictor

Text

Predicted Break type

Word and POS
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Context Analyzer

Predicted punctuation &
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PM sequence
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Fig.3: A diagram of the proposed break prediction scheme. 

3.1. CRF-based Punctuation Generator 
The task of the CRF-based Punctuation Generator can be viewed 
as a label-tagging problem that labels each lexical word juncture 
with the presence or absence of a major PM, Y, by using features 
of lexical word, W, and POS, S. It is hence formulated as 

1
1 1

1( | , ) exp ( , , , )
( , )

T I

i i t t
t i

P f Y y Y
N

Y W S W S
W S

            (1) 

where ( , )N W S  is a normalization factor to ensure that 
( | , ) 1P

Y
Y W S ; t stands for lexical word index; tY  represents 

the presence or absence of a major PM between t-th and (t+1)-th 
lexical words; I represents the number of feature functions; and 

1( , , , )i t tf Y y Y W S  is a feature function defined by 

1

1,  if ( , )  is satisfied and  
( , , , )

0,  otherwise
j k

i t t

h y y
f Y y Y

W S
W S          (2) 

where jh  represents the j-th possible feature context; and ky  is 
the k-th possible tag to be labeled. Generally, feature contexts are 
organized into several groups, referred to as ‘feature templates’. 
Table 3 displays the feature templates used in this study. 

Table 3: Targets, features and feature templates of the CRF-based 
punctuation generation 

Target description 

tY  1y : presence of the major PM ( ‘ ’, ‘ ’, ‘ ’, ‘ ’, 
‘ ’, ‘ ’), 0y : absence of the major PM 

Feature description 

tW  t-th lexical word 

tS  POS of t-th lexical word 
Feature templates (separated by comma) 

Lexical word context: tW , 1tW , 1t
tW , 2t

tW , 1
1

t
tW , 2

1
t

tW ,  

POS context: tS , 1tS , 1t
tS , 1

t
tS , 2t

tS , 1
1

t
tS , 2

1
t
tS ,  2

t
tS , 3

1
t
tS , 

1
2

t
tS , 3t

tS , 2
2

t
tS , 3

1
t
tS , 3

2
t
tS  

Lexical word and POS context: ( tS , 1tW ), ( tW , 1tS ), 

( 1tS , 1t
tW ), ( 1t

tW , 2tS ), ( 1tS , 2t
tW ), ( 1

1
t

tW , 2tS ), 

( 1tS , 1t
tW , 2tS ) 

The predicted punctuation can be obtained by 

1 2

* * *
1 2

, , ,
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T
T
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Y Y Y P Y W S

,
(

TY, T

*, arg*
T, arg*                                            (3) 

And the punctuation confidence is given by 
1( , ) ( | , )t tP Y yW S W S                                                             (4) 

which is the marginal probability of the presence of major PM. 
 
3.2. Context Analyzer and MLP Break Predictor 
The Context Analyzer is used to form a basic contextual linguistic 
feature vector for the break prediction task. The features used for 
each word juncture are: 

 6 Boolean flags for 6 PM types 
 5 real numbers for the length (in syllable) of the 

current/following/previous sentences (delimited by the major 
PMs), and the distances (in syllable) to the previous/following 
major PMs. 

 (m+n) 82 POS Boolean flags which consist of  
 Level-3 POS of m previous/n following words: 47 categories 
proposed by CKIP [13]. 

 Level-2 POS of m previous/n following words: 23 categories 
merged from Level-3 POS. 

 Level-1 POS of m previous/n following words: 12 categories 
also merged from Level-3 POS. 

 Broad class of m previous/n following words: substantial 
word or function word. 

 (m+n) 5 word length flags which consist of 
 Word lengths of m previous/n following words: word length 
of 1, 2, 3, 4 and 5  syllable(s). 
 

The input feature vector of the MLP Break Predictor includes 
(1) the predicted punctuation, (2) the punctuation confidence 

( , )t W S , and (3) basic contextual linguistic feature of (m+n)
87+11 dimensions. The MLP Break Predictor is of 3-layer 
structure with one hidden layer. The output layer consists of five 
nodes corresponding to NPB, B2-2, B3, B4 and Be (end of the 
utterance). Both the hidden and output layers use standard sigmoid 
functions. The training algorithm for the MLP is the error 
backpropagation algorithm. 
 

4. EXPERIMENTAL RESULTS 
The corpus used for training the CRF-based Punctuation Generator 
was the Academia Sinica Balanced Corpus of Modern Chinese 
V.4.0 [14] (ASBC4.0) which consists of 9,454,734 words (or 
31,126 paragraphs). The number of target punctuation classes is 2: 
one for major PMs { , , , , , } and another for all 
others. The CRF model was trained by the CRF++ [15] with a cut-
off setting of the features that occured no less than 3 times in the 
given training data. 

Table 4 displays the experimental results on the training set 
ASBC4.0 and the Treebank corpus used in the break prediction 
experiment. A high F-score of 85.8 was reached. This shows that 
the punctuation prediction is quite well. But, we still need to check 
the effects of insertion and deletion errors of the punctuation 
prediction on break prediction. Table 5 displays the co-occurrences 
of hit, insertion and deletion of major PM with the four break types 
for the training set of Treebank. Interestingly, the generated 
punctuations hit with major PMs were more likely to correlate with 
B4s while those of deletions were more likely to correlate with B3s. 
This implies that the generated punctuation has some ability to 
disambiguate B3 and B4. On the other hand, the insertions of 
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generated punctuations were likely to co-occur with B3 so as to 
provide useful information in the prediction of non-PM prosodic 
phrase boundary.  

Fig. 4 displays the histogram of punctuation confidence 
corresponding to various types of word juncture. It can be clearly 
observed that the values of punctuation confidence were higher as 
target breaks are longer in pause duration. This shows that the 
punctuation confidence can be used to help to disambiguate 
various break targets on both PM and non-PM word junctures. 
 
Table 4: Experimental results of punctuation generation 

 precision recall F-score 
 ASBC4.0 89.7% 84.6% 87.1 

Treebank - training set 86.5% 81.1% 83.7 
Treebank - test set 86.9% 84.7% 85.8 

 
Table 5: Co-occurrences of the predicted punctuation error types 
and the four break types.  

 NPB B2-2 B3 B4 
Hit 0 0 1,418 2,049 
Insertion 173 56 363 7 
Deletion 2 0 649 238 
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Fig. 4: Histograms of the punctuation confidence corresponding to 
various types of word juncture. X-axis and Y-axis represent the 
punctuation confidence and sample count, respectively. 
 

In the break prediction experiment, three schemes were 
compared, including (1) break prediction using only PMs as input 
features (referred to as PM_only), (2) break prediction using the 
basic contextual linguistic features described in Subsection 3.2 
(referred to as Basic), and (3) break prediction using the basic 
contextual linguistic features, predicted punctuation and 
punctuation confidence (referred to as Basic+proposed). The 2-
previous and 2-following word lengths and word POSs, i.e. m=2 
and n=2, were empirically set. The numbers of hidden nodes of 
MLP for the three schemes were all set to be 90. Table 6 displays 
the precision, recall and F-score for the three target break types 
obtained by the three schemes. As shown in the table, the 
Basic+proposed scheme outperformed the other two schemes. The 
results confirmed the usefulness of the proposed linguistic features 
of predicted punctuation and punctuation confidence. 
 
Table 6: Precision (%)/recall (%)/F-score of the break prediction 
using various linguistic feature sets.   
 B2-2 B3 B4 
PM_only 0.0/0.0/0.0 39.1/40.8/39.9 90.2/19.9/32.6 
Basic 48.2/13.9/21.6 46.2/36.1/40.5 73.6/62.9/67.8 
Basic+proposed 52.0/16.2/24.7 49.5/39.9/44.2 76.3/65.6/70.5 

 

5. CONCLUSIONS 
Two statistical linguistic features, predicted punctuation and 
punctuation confidence, are introduced in this paper to help to 
improve the performance of prosodic break prediction. The 
effectiveness of the proposed approach was confirmed by the 
experiment on the Treebank speech corpus. In future works, it is 
worthwhile to incorporate the punctuation confidence with the 
durational information of prosodic units (i.e., PW, PPh, BG/PG) 
for further improvement on prosodic break prediction. Conducting 
a formal listening test on TTS to further evaluate the proposed 
method is also worth doing. 
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