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ABSTRACT
In this paper, we present a transform-domain Wiener filtering

approach for enhancing speech periodicity. The enhancement

is performed on the linear prediction residual signal. Two se-

quential lapped frequency transforms are applied to the resid-

ual in a pitch-synchronous manner. The residual signal is ef-

fectively represented by two separate sets of transform coef-

ficients that correspond to the periodic and aperiodic compo-

nents, respectively. A Wiener filter operating on the trans-

form coefficients is developed to restore periodicity and re-

duce noise. Different filter parameters are designed for the

transform coefficients of the periodic and aperiodic compo-

nents. A template-driven method is used to estimate the fil-

ter parameters for the periodic component. For the aperiodic

components, the filter parameters are computed based on a

local SNR for effective noise reduction. Experimental results

confirm that the harmonic structure of the signal can be effec-

tively restored with the proposed approach.

Index Terms— Speech periodicity enhancement, trans-

form domain, Wiener filtering, sparse representation

1. INTRODUCTION
Periodicity is an important property of speech signals. Period-

icity in speech signals is the result of periodic vibration of the

vocal cords when voiced speech is produced. It determines

the pitch of speech, which is essential to speech communica-

tion, especially for tonal languages. Important high-level lin-

guistic information, e.g., intonation, lexical tones, stress and

focus, is conveyed by the pitch contour of an utterance.

Restoring the periodicity of noise-corrupted speech is use-

ful for improving perceptual quality of speech, in particular

the perceptibility of pitch [1]. Comb-filtering is commonly

used to suppress non-harmonic components in speech signals

[2]. In [3] it was proposed to recover the harmonic struc-

ture of the original speech in the frequency domain. There

have been relatively few studies on the enhancement of time-

domain waveform periodicity. This is due to the difficulty

of separating periodic and aperiodic components in a time-

domain speech signal. In the area of hearing research, tempo-

ral periodicity enhancement was shown effective in improving

pitch and tone perception [4]. However, severe nonlinear dis-

tortion was observed in the enhanced speech. In a preliminary

study [5], we demonstrated the feasibility of waveform peri-

odicity enhancement using a recently proposed speech repre-

sentation model [6]. With the model, periodic and aperiodic

components of a signal can be effectively separated in a trans-

form domain. Periodicity enhancement is thus achievable.

In this study, we propose a Wiener filtering approach that

operates in the transform domain for speech periodicity en-

hancement. The Wiener filter is employed to restore wave-

form periodicity and reduce noise. The enhancement is per-

formed on the linear prediction (LP) residual signal. The LP

residual is decomposed into periodic and aperiodic compo-

nents using two-stage transforms. In the transform domain,

the periodic component is concentrated and represented by a

small portion of the coefficients. The Wiener filter for this

subset of coefficients contributes to the restoration of the pe-

riodic impulse shape waveform. The filter parameters are es-

timated using a template-driven approach. A set of represen-

tative waveform cycles is learned from clean residuals. Their

transform coefficients are used as templates, which are as-

sumed to sparsely represent the coefficients of the periodic

component. The constituent templates are estimated and used

to determine the filter parameters. For the transform coeffi-

cients of the aperiodic components, the Wiener filter is mainly

for noise reduction. The filter parameters are obtained based

on local SNRs of the respective modulation bands. Our ex-

perimental results confirm that the harmonic structure of the

signal can be effectively restored with the approach.

2. EFFECTIVE SIGNAL REPRESENTATION AND
DECOMPOSITION

Let e(n) denote the LP residual of an input speech signal. To

allow effective separation of periodic and aperiodic compo-

nents in the subsequent transforms, we first time-warp e(n)

to have a constant pitch period P0 according to the speech

pitch track [6]. Let e(ν) denote the warped residual signal and

e(k)(ν) denote the kth pitch-synchronous frame, i.e., e(k)(ν) =
e(kP0+ν), ν = 0, 1, · · · , 2P0−1. The first transform is a mod-

ulated lapped transform, which aims to produce uncorrelated

transform coefficients in different frequency channels. The

DCT-IV transform is used. The transform coefficients f (k, l)
are computed by

f (k, l) =
2P0−1∑
ν=0

e(k)(ν)d(ν)

√
2

P0

cos

(
(2l + 1)(2ν − P0 + 1)π

4P0

)
, (1)

where l = 0, 1, · · · , P0 − 1 is the channel index and d(ν) is the

square-root Hann window.
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The second transform is a modulation transform that

operates on f (k, l). The purpose is to obtain a compact rep-

resentation, as speech exhibits at times strong periodicity.

This also means separating the periodic and aperiodic com-

ponents of the signal. The DCT-II transform is used for

effective energy concentration. Given a segment of Q pitch

synchronous frames, the coefficients of the lth channel, i.e.,

f (0, l), f (1, l), · · · , f (Q − 1, l), are transformed to generate Q
output coefficients

g(q, l) =
Q−1∑
k=0

f (k, l)c(q)

√
2

Q
cos

(
(2k + 1)qπ

2Q

)
, (2)

where q = 0, 1, · · · ,Q − 1 is the modulation band index,

c(0) =
√

1/2 and c(q) = 1 for q � 0. For the entire residual,

Q of each individual segment for the modulation transform

is determined based on an energy concentration measurement

[5]. With the inverse transforms, the original signal can be

reconstructed exactly from the transform coefficients.

Fig. 1 shows a segment of warped residual signal and

the corresponding transform coefficients. It can be seen that

most of the energy is concentrated in the low modulation

bands, especially in the first band. The coefficients of the

first modulation band actually represent the periodic compo-

nent of the signal, while the remaining coefficients describe

the aperiodic components. This can be easily understood

by considering a strictly periodic signal. For such a signal,

all pitch-synchronous frames are identical and hence the re-

sults of the pitch-synchronous transform are identical, i.e.,

f (k1, l) = f (k2, l) for any k1, k2 = 0, 1, · · · ,Q − 1. So the

modulation transform for each channel is applied to a con-

stant data sequence, and there is only one non-zero output

coefficient at the first modulation band.

3. TRANSFORM-DOMAIN WIENER FILTERING
As the transform domain concentrates the signal energy, it is

a particularly effective domain for the Wiener filtering opera-

tion. In this section, we discuss the principles of Wiener fil-

tering in the transform domain for periodicity enhancement.

Estimation of filter parameters will be presented in Section 4.

3.1. The MMSE optimal Wiener filter
LP residual signal is considered as the primary carrier of

periodicity-related information in speech. Given a noisy

residual signal, let us consider the task of recovering the

underlying clean one. The noisy residual r(ν) is expressed as

r(ν) = e(ν) + u(ν), (3)

where e(ν) is the clean residual and u(ν) is the noise. e(ν) and

u(ν) are assumed to be uncorrelated. A common criteria for

estimating e(ν) is to minimize the mean square error (MMSE)

between the desired signal e(ν) and the estimated signal ê(ν).
Wiener filter is optimal for this requirement. In the transform

domain, the Wiener filter can be derived as

h(q, l) =
g2

e(q, l)
g2

e(q, l) + g2
u(q, l)

, (4)
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Fig. 1: Transform Coefficients. P0 = 68.

where ge(q, l) and gu(q, l) are the transform coefficients of e(ν)
and u(ν), respectively. The estimated or filtered coefficients

for ê(ν) are then obtained by

ĝe(q, l) = h(q, l) · gr(q, l). (5)

In this paper, h(q, l) is referred to as the filter parameter. The-

oretically, ê(ν) reconstructed from ĝe(q, l) is optimal in the

sense that the signal-to-noise ratio (SNR) is maximized.

With the two-stage transforms, the signal is effectively

represented by two sets of coefficients, i.e., coefficients in the

first band for the periodic component and coefficients in the

remaining bands for the aperiodic components. For the pur-

pose of restoring waveform periodicity, we investigate the fil-

ter parameters for these two sets of coefficients separately.

3.2. Wiener filter for periodic component
For voiced speech, the residual is ideally an impulse train.

Thus the coefficients of the first modulation band essentially

represent the periodic impulse. For restoring waveform peri-

odicity, we intend to obtain ĝe(0, l) for each channel so that

the desired waveform shape can be recovered. The filter pa-

rameter h(0, l) plays an important role for waveform shaping.

Denote h(0, l) as hws(l). For l = 0, 1, · · ·, P0 − 1, we have

ĝe(0, l) = hws(l) · gr(0, l). (6)

3.3. Wiener filter for aperiodic components
For the coefficients of the high bands, it is observed that the

noise energy becomes much higher than the energy of the

speech residual. This is because the speech energy is concen-

trated in the first band and the energy left in the high bands

is far weaker. On the other hand, for the noise, most energy

is distributed in the high bands. Therefore, the Wiener filter

for the high-band coefficients mainly contributes to noise re-
duction. For effective estimation of the filter parameters, we

propose to determine the filter parameters based on a local

SNR measure.

Denote SNR of the coefficient at channel l and band q as

SNR(q, l) =
g2

e(q, l)
g2

u(q, l)
. (7)

Eq. (4) can then be expressed as

h(q, l) =
(
1 +

1

SNR(q, l)

)−1

. (8)

Eq. (8) shows that h(q, l) is determined by the SNR of the

respective coefficient. Since the speech energy is weak, it

is trivial to determine the SNR for each specific coefficient.
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Considering that SNRs of different channels in the same high

band are usually low and close, we employ a local SNR,

known as the modulation band SNR, as defined below

SNRb(q) =

∑
l g2

e(q, l)∑
l g2

u(q, l)
. (9)

As the next section will show, SNRb(q) can be effectively esti-

mated. With SNRb(q), the filter parameter for noise reduction

in modulation band q is proposed as

hnr(q) =

(
1 +

1

SNRb(q)

)−1

. (10)

Subsequently, the filtered coefficients are obtained by

ĝe(q, l) = hnr(q) · gr(q, l), for q > 0. (11)

4. PARAMETER ESTIMATION
To estimate hws(l) and hnr(q), we assume that power spectrum

of the noise is flat in the transform domain. This is reason-

able because practical noise is normally aperiodic. In addic-

tion, the speech pitch is used for signal warping. As a result,

the transform coefficients of the noise usually do not have a

particular portion with relatively high energy concentration.

Based on this assumption, the filter parameters are estimated.

4.1. Filter parameters for aperiodic components
First, the noise variance σ̂2

u is estimated with a codebook-

driven method [7] that we use to estimate the LP coefficients

for speech synthesis. The method is data-driven. For each

codeword pair of LP parameters of clean speech and noise,

optimal variances are computed for the speech and the noise.

With corresponding optimal variances, the codeword pair that

produces a spectrum closest to the noisy spectrum is selected

as the result. From σ̂2
u, energy of the noise is obtained. For

a block of signal u(ν1), · · · , u(ν2) used for the transforms, the

total energy in modulation band q is estimated as

ξb =
(ν2 − ν1)σ̂2

u

Q
, (12)

where Q is the number of modulation bands as in Eq. (2). The

modulation band SNR is then estimated as

ˆSNRb(q) =

∑
l g2

r (q, l) − ξb
ξb

. (13)

Substituting (13) into (10), we obtain

ĥnr(q) = max

(∑
l g2

r (q, l) − ξb∑
l g2

r (q, l)
, 0

)
. (14)

4.2. Filter parameters for periodic component
For the first-band coefficients, prior knowledge of clean resid-

ual is utilized to gain more accurate restoration of the im-

pulse shape waveform. A template-based approach is pro-

posed. A set of representative impulse waveforms is learned

from clean (warped) residual signals. Each of them describes

a cycle of impulse waveform of typical shape. Their vari-

ants with different phase shifts are also generated. Then for

each waveform of one frame length, the transform coefficients

are computed as a template. Denote the template in a vector

form, i.e., ḡe = [ḡe(0, 0) ḡe(0, 1) · · · ḡe(0, P0 − 1)]T . From

all templates, a prior information matrix G is composed as

G = [ḡ{1}e ḡ{2}e · · · ḡ{n}e · · · ḡ{N}e ], where ḡ{n}e denotes the nth tem-

plate. G ∈ RP0×N and N � P0. G is used to represent the first-

band coefficients of voiced residuals. Specifically, for a block

of clean residual of Q pitch-synchronous frames, the trans-

form coefficients ge = [ge(0, 0) ge(0, 1) · · · ge(0, P0 −1)]T are

represented as a sparse linear combination of the templates,

ge = Gx, (15)

where x ∈ RN×1 is a sparse weight vector. Eq. (15) is equiv-

alent to representing the periodic impulse of the signal as an

interpolation of a few similar ones from the templates. From

the noisy coefficients gr = [gr(0, 0) gr(0, 1) · · · gr(0, P0−1)]T ,

the sparse weight x is then estimated by

min
x
‖gr −Gx‖22

subject to ‖x‖1 ≤ √Q.
(16)

With the estimated sparse weight x̂, we obtain

ĝe = Gx̂. (17)

The filter parameters are constructed from ĝe as

ĥws(l) =
ĝ2

e(0, l)
ĝ2

e(0, l) + ξb/P0

. (18)

The constraint ‖x‖1 ≤ √Q in (16) is imposed to make

sure that only the few templates with a similar impulse shape

are selected [8]. The value
√

Q is set based on the following

considerations. For the sparse representation (15), if ge is ob-

tained from a single frame, we may require that all non-zero

elements in x add up to 1 from an interpolation viewpoint.

Consider the special case that the signal block consists of Q
identical frames, then the corresponding ge is simply a scaled

version of the single frame coefficients with a scaling factor√
Q. So in general, we impose ‖x‖1 ≤ √Q.

5. EVALUATION
The proposed method is evaluated by objective assessment of

the quality of enhanced residuals and enhanced speech sig-

nals. A previously proposed method [5] is used for com-

parison. For comparison of the quality of enhanced speech,

the comb-filter method (CombF) [2] and the state-of-the-art

codebook-driven (CB) method [7] are also used. For the ap-

proach in [5], ĝe(q, l) is obtained by applying fixed weight

(FxdWght) to the noisy coefficient, i.e., ĝe(q, l) = wq · gr(q, l),
where w0 = 1, w1 =

2
3
, w2 =

1
3

and wq = 0 for q > 2.

In the evaluation, 80 gender-balanced utterances from

the CSLU-VOICES corpus [9] are used. They were down-

sampled to 8 kHz. Half of the utterances are used for testing

and the other half for parameter training. The template matrix

G is trained in a speaker-dependent manner. For each speaker,

the number of templates in G is 1000. Two types of noise are

used. White noise was generated by software and car noise

(VOLVO-340, 120km/h) was obtained from the NOISEX-92

database. Twelfth-order LP analysis, with a frame length of

24 ms and 50% overlap, is used to extract the residual signals.

Mean Segmental Harmonicity (SegHarm) [10] and global
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SNR are used to assess the enhanced residual signals. SegHarm

measures the overall energy ratio between the harmonic peaks

and their surrounding noise. There are three kinds of pitch

tracks used in the evaluation:

FR
0 : obtained via manually labeling the clean waveforms. It

is used as the reference for computing SegHarm. With

FR
0 , SegHarm of the clean residuals is 1.91.

FC
0

: estimated from clean speech using the method pro-

posed in [11]. The gross pitch error rate is 2.5%.

FN
0

: estimated from noisy speech using the method in [11].

Gross pitch error rates are 5.7% and 10.8% for the cases

of 0 dB white noise and −10 dB car noise, respectively.

FC
0

and FN
0

are used for residual warping. For the warped

residuals, the constant pitch period P0 is 100 (warped-time

samples). Objective measurements of the enhanced resid-

uals are shown in Table 1. It can be seen that with both

approaches of periodicity enhancement, SegHarm and SNR

are significantly improved. The improvement implies that

the harmonic structure of the residual signal is effectively re-

stored and the noise is greatly suppressed. It is observed that

the Wiener filtering method noticeably outperforms the fixed

weight method. Particularly, the average SNR of the residuals

by Wiener filter is significantly higher.

We further evaluate the quality of enhanced speech for

the −10 dB car noise case. In the evaluation, FN
0

is used

for residual warping. Output speech signals are synthesized

with periodicity-enhanced (PE) residuals and LP coefficients

estimated with the CB method. LP coefficients obtained

from clean speech (CleanLP) are also used to illustrate the

upper-bound performance. For comparison, speech signals

enhanced by the CombF method and the CB method, re-

spectively, are also obtained and evaluated. Global SNR,

frequency-weighted segmental SNR (fwSegSNR) and the

perceptual evaluation of speech quality (PESQ) are used to

evaluate the enhanced speech [12]. Table 2 shows the results.

It can be clearly seen that with periodicity enhancement,

speech quality in terms of the objective measurements is

significantly improved. With PE, performance of the CB
method is noticeably improved. The Wiener filtering method

surpasses the fixed weight method in all the results, especially

in the SNR and PESQ results.

6. CONCLUSIONS
A Wiener filtering approach has been proposed for enhanc-

ing speech periodicity in a transform domain. The proposed

Wiener filter operates on two separate sets of transform co-

efficients to restore waveform periodicity and reduce noise.

Experimental results confirm that with the Wiener filter, the

harmonic structure in the enhanced signals can be effectively

restored and noise can be greatly suppressed. It is also con-

firmed that the Wiener filter method consistently outperforms

the compared methods. With periodicity enhancement, per-

formance of the codebook-driven method was noticeably im-

proved. The improvement confirms the effectiveness of the

transform-domain filtering approach.

Table 1: Objective measurements of periodicity-enhanced residuals

Noise Cond.
Resid. SegHarm Resid. SNR (dB)

FC
0

FN
0

FC
0

FN
0

White
Noise
(0 dB)

Noisy 1.19 −11.58

FxdWght 1.84 1.73 −5.67 −6.77

Wiener 1.92 1.81 −2.02 −3.45

Car
Noise

(−10 dB)

Noisy 1.39 1.28

FxdWght 1.90 1.68 2.83 1.73

Wiener 1.94 1.78 4.09 3.32

Table 2: Objective measurements of periodicity-enhanced speech

Method Cond.
SNR
(dB)

fwSNRseg
(dB)

PESQ

Input −10 3.74 1.93

CombF −6.45 4.08 1.98

CB −5.16 4.94 2.19

CB+PE
FxdWght −3.20 6.43 2.26

Wiener 0.21 7.08 2.61

CleanLP+PE
FxdWght −1.36 9.16 2.65

Wiener 2.11 10.45 3.15
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