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ABSTRACT
In the context of noise reduction algorithms, three instru-
mental measures are of major interest: the speech compo-
nent quality, the level of noise attenuation, and noise dis-
tortion in terms of musical tones. As several proposals are
made for the first two, the amount of musical tones is com-
monly still subjectively evaluated. Recent exploration of
the log-kurtosis ratio for instrumentally measuring musi-
cal tones has led to white box test methodologies requir-
ing specific information about the particular noise reduction
algorithm. In this paper we propose a simple yet robust in-
strumental musical tones measurement, which is applicable
to arbitrary unknown noise reduction systems, i.e., a black
box measurement. A subjective listening test has been con-
ducted to verify the proposed instrumental measure. Our
measurement methodology has been proposed as part of an
ITU-T Recommendation in Study Group 12, FG CarCOM.

Index Terms— musical tones, instrumental measure-
ment

1. INTRODUCTION
An important issue for successful development of noise re-
duction algorithms is an effective quality assessment. Due
to the high costs and efforts of subjective tests, instrumen-
tal measurements are often conducted in practice. In this
paper we differentiate the instrumental measurements into
two categories: The white box test, which (in the context
of musical tones measurements) often mandates a specific
spectral weighting rule and knowledge of some internal pa-
rameters. Secondly, the black box test, which requires no
knowledge of the noise reduction system at all. Three qual-
ity measures are typically of interest for a noise reduction
system: the speech component quality, the level of noise
attenuation, and the noise distortion, e.g., in terms of the
amount of musical tones. The first two can be well eval-
uated in an instrumental manner, see, e.g., ITU-T Recom-
mendations P.1100 [1] and P.1110 [2]. The instrumental N-
MOS (noise mean opinion score) utilizing a psychoacousti-
cal hearing-model based relative approach [3] is employed
in [4] measuring the total noise transmission quality. N-
MOS is calculated from the non-speech segments of a noisy

speech signal and the enhanced signal, respectively. The
clean speech signal is required as a reference signal to iden-
tify the non-speech segments by a VAD (voice activity de-
tection). In our context, N-MOS is not useful because it
combines noise attenuation and noise distortion in a single
measure. However, we are concerned with noise distortion
only, particularly with musical tones, so that noise distor-
tion can be measured separately from noise attenuation. Re-
cently, a high correlation of the perceived amount of musi-
cal tones with an instrumental log kurtosis ratio measure has
been reported in [5] requiring specifically the spectral sub-
traction approach to noise reduction. Moreover, the noisy
speech signal and the enhanced signal are used for comput-
ing the log kurtosis ratio in [5], making this ratio also de-
pendent on the level of noise attenuation. The kurtosis ratio
instead of the log kurtosis ratio of an input noise signal and
the output (processed) noise signal has been further investi-
gated in [6, 7]. Using the assumption of gamma-distributed
squared speech and noise spectral amplitudes and assum-
ing knowledge of internal variables of the noise reduction
scheme (i.e., a white box test methodology), an analytical
function can be obtained to calculate the (log) kurtosis ratio
in [5–7]. However, the derivation of this analytical func-
tion is difficult and is still unavailable for noise reduction
algorithms using the widely employed decision-directed ap-
proach to a priori SNR estimation [8]. Moreover, the re-
quirement to know the internal variables of the noise reduc-
tion scheme prevents its use as black box measurement as
required in practice.

In this paper we improve a modified log kurtosis ra-
tio [9] based on input noise signal segments and respec-
tive output (i.e., processed) noise signal segments. We show
that for the noisy speech input signals the formerly required
VAD can now be completely omitted, and noise-only sig-
nals can be processed yielding an instrumental measure re-
lated to noise distortion only (more specifically: related to
musical tones). We focus on noise-only signals, since we
consider this to be sufficient for musical tones’ analysis pur-
poses. The proposed measure does neither require any as-
sumption about squared spectral amplitude statistics, nor
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does it mandate a specific noise reduction algorithm or even
knowledge of internal variables; it is a black box measure-
ment approach.

The paper is organized as follows: In Section 2.1 we re-
view the previous published (log) kurtosis ratio calculation
for white box musical tones measurements. Our modified
noise kurtosis ratio measure, which can be applied in black
box tests, is then described in Section 2.2. Finally, Section
3 presents our experimental setup and results. Furthermore,
subjective listening test results will be provided.

2. MUSICAL TONES MEASUREMENT
USING (LOG) KURTOSIS RATIO

2.1. Specific White Box Test Approaches
In this Section, we briefly review the state-of-the-art (log)
kurtosis ratio for instrumentally measuring musical tones
[5–7]. In the discrete Fourier transform domain, the mi-
crophone signal at frame � and frequency bin k can be for-
mulated as Y (�, k) = S(�, k)+N(�, k), with N(�, k) being
the additive noise and S(�, k) being the clean speech signal.
In [5], the spectral subtraction approach for noise reduction
is investigated, which is given as

Ŝ(�, k)=

√
|Y (�, k)|2−ν · φ̂NN (�, k)·ej arg(Y (�,k)) (1)

with Ŝ(�, k) being the enhanced signal, φ̂NN (�, k) being the
estimated noise power spectral density, ν being a subtrac-
tion coefficient and arg(Y (�, k)) being the phase of Y (�, k),
respectively. Parameter ν controls how much of the es-
timated noise power spectrum will be subtracted from the
noisy microphone signal power spectrum.

A high correlation of the perceived amount of musical
tones with the log kurtosis ratio has been shown in [5]. The
log kurtosis ratio here is calculated as the log ratio between
the kurtosis of |Y (�, k)|2 and the kurtosis of |Ŝ(�, k)|2. In
the theory of higher-order statistics [10], the kurtosis Ψx of
a random variable x is defined as

Ψx =
E{[x − E{x}]4}

(E{[x − E{x}]2})2
, (2)

where E{·} is the expectation operator. In order to cal-
culate the kurtosis, the authors of [5] assume the squared
speech and noise spectral amplitudes as gamma-distributed.
The pdf of |Y (�, k)|2 can then be formulated as a function
f(α, θ) with α and θ being estimated from |Y (�, k)|2. Sub-
sequently, the kurtosis of |Y (�, k)|2 can be calculated as a
function f(α) with α being the only parameter. In the same
way and by knowing the subtraction coefficient ν, the kur-
tosis of |Ŝ(�, k)|2 can be calculated as a function f(α, ν).
Finally, the log kurtosis ratio of |Y (�, k)|2 and |Ŝ(�, k)|2

can be formulated as an analytical function controlled by the
parameters α and ν only. The same method of formulating
an analytical function for calculating the kurtosis ratio has
been applied also in [6,7]. Please note, in [6,7] the kurtosis
ratio instead of the log kurtosis ratio is calculated based on

the noise components only, which makes it independent of
speech distortion and noise attenuation.

However, all (log) kurtosis ratio calculations in [5–7]
need internal access to the noise reduction algorithm, e.g.,
the subtraction coefficient ν for spectral subtraction [5, 6]
and also for the Wiener filter family in [7], which is imple-
mented in a spectral subtraction-like manner1. This makes it
an improper musical tones measure for black box measure-
ments of arbitrary and internally unknown noise reduction
systems.

2.2. Generic Approach for Black Box Tests
Now we investigate our modified noise log kurtosis ratio [9]

ΔΨlog = ln

(
Ψñ

Ψn

)
, (3)

where Ψn and Ψñ are the kurtosis related to the noise sig-
nal and to the filtered noise signal, respectively. We use
ΔΨlog defined in (3) to quantify the amount of musical
tones. Different from [5–7], where |N(�, k)|2 are assumed
to be gamma distributed in the power spectral domain, no
such assumption is needed here. Similar to (2), an instanta-
neous kurtosis of squared amplitude noise DFT coefficients
for each frame � can be computed as

Ψn(�)=

1
K

K∑
k=1

[
|N(�, k)|2 − |N(�, k)|2

]4
(

1
K

K∑
k=1

[
|N(�, k)|2 − |N(�, k)|2

]2)2 , (4)

with |N(�, k)|2 = 1
K

K∑
k=1

|N(�, k)|2. The kurtosis Ψñ(�)

can straightforwardly be computed by applying |Ñ(�, k)|2

in (4). The respective terms Ψn and Ψñ can then be calcu-
lated as

Ψn =
1

L

L∑
�=1

Ψn(�), Ψñ =
1

L

L∑
�=1

Ψñ(�). (5)

It is important to note that we only process noise, i.e., y(n)=
n(n). Inserting Ψn and Ψñ into (3), the log kurtosis ra-
tio ΔΨlog can finally be computed without any assumption
about (speech and) noise probability distribution functions.

Please note, our proposed noise log kurtosis ratio mea-
sure defined in (3) is calculated only from the input noise
signal n(n) and the output (processed) noise signal ñ(n),
which allows it to be applicable for all noise reduction algo-
rithms, also those using the decision-directed approach for
estimating the a priori SNR. Furthermore, the calculation
of ΔΨlog needs no extra knowledge of the noise reduction
scheme and its internal parameters, which means that it can
be considered as a black box measurement.

1Note that it is further stated in [6,7], that since the derivation of an an-
alytical function for calculating the (log) kurtosis ratio is difficult, a solu-
tion cannot be given for noise reduction algorithms applying the decision-
directed approach for a priori SNR estimation. Therefore, the referenced
method for calculating the kurtosis ratio is not applicable to a wide range
of state-of-the-art noise reduction algorithms.
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Fig. 1. Noise log kurtosis ratio for the four weighting rules

3. EXPERIMENTS

In this section, we will evaluate the proposed instrumental
musical tones measure from Section 2.2 by processing only
noise signals with different noise reduction systems. Fur-
thermore, a subjective listening test verifying the proposed
measure will be presented.

3.1. Simulation Setup

We evaluate four state-of-the-art noise reduction algorithms
with noise signals only as input signals. Our experiments
are performed with 18 in-car background noise signals from
the ETSI noise database [11], each sampled with 16 kHz
and having a length of 8s. All noise signals are at -26
dBov according to ITU-T Recommendation P.56 [12]. The
following setup is used: A DFT with length K = 512
and a frame shift of 50% are applied, using the square root
Hann window as analysis and synthesis windows, respec-
tively. Four state-of-the-art noise reduction algorithms are
tested: the MMSE-SA (SA) estimator [8] and the MMSE-
LSA (LSA) estimator [13], the a priori SNR-driven Wiener
filter (WF) [14], and the super-Gaussian joint MAP (SG)
estimator [15]. For all weighting rules, an estimation of the

a priori SNR defined as ξ(�, k) = E{|S(�,k)|2}
E{|N(�,k)|2} is needed,

being successfully addressed by Ephraim and Malah in their
decision-directed (DD) approach [8] as

ξ′(�, k) = β ·
|Ŝ(�−1, k)|2

φ̂NN (�−1, k)
+(1 − β)·P [γ(�, k)−1], (6)

ξ(�, k) = max{ξ′(�, k), ξmin},

with a smoothing factor β, the enhanced signal of the pre-
vious frame Ŝ(�− 1, k), the a posteriori SNR γ(�, k) =
|Y (�,k)|2

φ̂NN (�,k)
, and ξmin =−15 dB. The estimated noise power

spectrum φ̂NN (�, k) is obtained by minimum statistics [16].
Setting β close to unity yields a strong smoothing of the

a priori SNR estimate, which helps to significantly reduce
musical tones [17]. To demonstrate the proposed instrumen-
tal musical tones measurement, an evaluation with the full
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Fig. 2. Noise log kurtosis ratio for the four weighting rules with
β = 0.96, 0.98, 0.993
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Fig. 3. ACR listening test results for the four weighting rules with
β = 0.96, 0.98, 0.993

range of 0 ≤ β < 1 should be performed. Please note,
we change β from 0 to 1 only to show the noise log kurto-
sis measurement results for different values of β, however,
no information of β is needed for calculating the noise log
kurtosis measure according to (3).

3.2. Simulation Results
The results of the noise log kurtosis ratio ΔΨlog for SA,
LSA, WF and SG are shown in Fig. 1. Using the proposed
noise log kurtosis ratio (3), we observe: With increasing β,
ΔΨlog will accordingly increase towards zero, meaning that
the kurtosis of ñ(n) becomes more similar to the kurtosis of
n(n), which means higher statistical similarity of n(n) and
ñ(n), or, less musical tones. We found that by changing
β in (6), the higher the noise log kurtosis ratio is, the less
musical tones are observed. If β is chosen to be greater than
0.9, WF and SG show a more rapid ΔΨlog increase than SA
and LSA .

In order to further validate ΔΨlog as an applicable in-
strumental musical tones measurement, a subjective listen-
ing test in an ACR (absolute category rating) fashion is con-
ducted for judging the audible level of musical tones. Six-
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teen test persons (experts and non-experts) had to rate the
audibility of the musical tones according to an ACR listen-
ing test with seven categories: (1) intolerably audible, (2)
loudly audible, (3) rather loudly audible, (4) moderately au-
dible, (5) slightly audible, (6) just audible, (7) inaudible.
Three in-car background noises from the 18 in-car back-
ground noises have been randomly chosen. Each noise has
been processed by the spectral weighting rules SA, LSA,
WF and SG. Three values of β with 0.96, 0.98 (being the op-
timal value for SA [8]), and 0.993 (being the optimal value
for SG [9]) are chosen for each spectral weighting rule. Al-
together 36 output (processed) noise signals had to be rated
by each subject. The related instrumental ΔΨlog measure-
ments are shown in Fig. 2 for comparison with the subjec-
tive listening test results shown in Fig. 3. It can been seen
that the ACR results match the ΔΨlog results very nicely
for all weighting rules, the correlations for SA, LSA, WF
and SG are ρSA = 0.94, ρLSA = 0.56, ρWF = 0.97 and
ρSG = 0.98, respectively. Please note that the outlier for
LSA at the large value of β = 0.993 is responsible for the
relatively low correlation value of ρLSA = 0.56. However,
the instrumental measure shows its optimal point (highest
ΔΨlog) at the very typical value of β = 0.98, which is def-
initely a good parameter choice for LSA. In addition, when
we observe LSA for the whole range of 0 ≤ β < 1 in Fig.
1, it can be seen that ΔΨlog is still an almost monotoni-
cally increasing function of β. We have achieved an average
correlation of ρ = 0.86 for the pool of all spectral weight-
ing rules between the instrumental ΔΨlog measure and the
ACR listening test. Both instrumental results and subjective
results reveal that the larger β is, the less musical tones are
perceivable. These results verify that the noise log kurtosis
ratio is an adequate instrumental measure for musical tones
in a generic black box test environment.

4. CONCLUSIONS

We address a new black box instrumental musical tones
measurement for arbitrary noise reduction systems. Com-
pared to state-of-the-art musical tones measures requiring
specific noise reduction algorithms, knowledge of internal
variables, and assuming specific noise (and speech) distri-
butions, our proposed noise log kurtosis ratio calculation
does not require any such assumptions. Subjective tests
have proven a good correlation to subjective musical tones
rating for a variety of noise reduction approaches.
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