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ABSTRACT

We provide a single channel speech enhancement method leveraging
the harmonic structure of voiced speech. A sinusoidal model, based
on the pitch of the speaker, is used to filter noisy speech and remove
any noise components that lie between the harmonics. To remove
noise that lie on each harmonic frequency, we use a noise estimation
procedure that exploits spectral sparsity of voiced speech. By mea-
suring the power spectrum at frequencies that correspond to the zero
crossings of the windowing function, we can estimate the noise lev-
els even in frames that have voiced speech. We also provide a con-
strained linear least squares formulation to reduce “musical noise”
which arises from difficulty in estimating speech and noise power
spectral densities. We show that our method yields high perceptual
performance over existing methods, and can easily adapt to condi-
tions in which the noise characteristics are constantly changing.

Index Terms— Speech enhancement, Noise estimation, Har-
monic filter

1. INTRODUCTION

Although there have been approaches to use multiple channels in en-
hancing speech [1], noise reduction on a single channel still remains
a challenge in most situations.

An indicator one uses to pick out the speaker’s voice from back-
ground noise is the speaker’s pitch. Adaptive comb filters [2] or
sinusoidal modeling [3] have been used to preserve the harmonic
structure of the speaker’s voice. We apply a similar method by ap-
plying a harmonic structured filter on the noisy signal to reduce any
noise that might exist in between harmonics. An essential issue with
harmonic filters is that any noise that lie specifically on the pitch and
its harmonics should be reduced as well. Since humans are sensi-
tive to the spectral peaks and these are what constitute the formant
structure of speech, it is important that an accurate noise estimate is
available at the peaks.

A large group of algorithms that perform noise estimation em-
phasizes temporal sparsity of speech. These range from methods
using voice activity detection (VAD) to methods that estimate noise
during speech activity using minimum statistics or recursive time
averaging [4]. These methods assume the speech power is low at a
recent speech frame in the past, and uses this frame to update the
noise estimate.

We show that an accurate noise estimate can be made in each
time frame by exploiting sparsity in the other domain, i.e., the spec-
tral domain. The harmonic structure of voiced speech enables us to
estimate the noise levels in-between harmonics, where the speech
power is low. Previous works [5, 6] briefly touch on this idea for
different applications. In this paper, we show that the exact frequen-
cies in which no speech should theoretically exist can be calculated
from the zero crossings of the windowing function in each harmonic
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Fig. 1. Spectrum of underlying speech signal X, noisy speech signal
Y, pitch harmonic filter H, and the filtered output signal Y - H

band. With this method, an accurate yet adaptive noise estimate can
be achieved in every time frame of the noisy speech, even if it is
voiced.

From the noise estimate we adjust the gain of our harmonic filter
in each harmonic frequency band with respect to the corresponding
SNR. Apart from the difference that the filter is modeled to have a
harmonic structure, our method largely falls into the general cate-
gory of spectral subtraction methods. A well known shortcoming of
these methods is that they introduce “musical noise” which appear
from the spectral islands of the de-noised spectrum and is caused
by the half-wave rectification process [7]. To minimize this, we for-
mulate our problem as a linear constrained least squares problem, in
which the difference between neighboring harmonic peaks are con-
strained. This prevents consecutive harmonic gains from fluctuating
and helps make the de-noised signal more pleasing to the human ear.

2. MODELING THE HARMONIC FILTER

Given a noisy speech signal y(n) = x(n) 4+ e(n), we aim to recover
the underlying speech signal, z(n), given no information about the
noise, e(n).

It is well known that voiced speech can be decomposed as an
impulse train generated at the vocal cords and is convoluted with a
filter, v(n), caused by the vocal tract. Given the hop size is R, the
m’th windowed frame of the signal y(n) can be expressed as,

ym(n) = y(n+mR)w(n)
(z(n) + e(n)),,, w(n)
( Z o(n—kT) *v(n) + e(n)> w(n) (1)

k=—oc0
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The Fourier Transform of this signal is,

Y (f) = }kio Vin (%) w (f - ;) +E() @

We apply a time varying harmonic filter H,,(f) on the noisy
speech spectrum Y, (f). This harmonic filter has the same shape as
the underlying voiced speech. i.e.,

Halh)= S AW (f— %) %)

k=—oc0

The idea of the harmonic filter is to capture the voiced speech
components in Eq. (2) and remove any frequency components that
do not correspond to the pitch and its harmonics. Fig. 1 illustrates
this idea of applying a harmonic filter on the noisy signal. Methods
for estimating the pitch is discussed in Sec. 2.1.

With this procedure we are able to reduce noise at frequencies
that cannot be explained with the voiced speech model. We, how-
ever, also have to reduce any noise that lie specifically on the har-
monic frequencies. The parameter, Ax, governs the gain at the har-
monic peaks and is determined by the noise level in the k’th har-
monic band. We propose a method that exploits the sparsity of
voiced speech to estimate the noise in Sec. 2.2.

Details of how to incorporate the pitch and noise estimate in
modeling the harmonic filter is presented in Sec. 2.3. Additional
linear constraints to minimize “musical noise” can be included in a
least squares problem and is described in Sec. 2.4. Finally, although
the pitch harmonic filter is modeled for voiced speech, we discuss
in Sec. 2.5 how it can handle de-noising of unvoiced speech compo-
nents.

2.1. Pitch estimation

Pitch detection is by itself a widely studied field, and there is a vast
variety of work on effective and accurate pitch detection methods.
Although an accurate estimate of the pitch is important, the focus of
this paper is not on searching effective methods of pitch detection.
We have thus implemented a simple algorithm where we search for
the highest peak of the log power spectrum in a pre-determined fre-
quency range using quadratic interpolation, and set that as our esti-
mate of the speaker’s pitch. To be more robust we can look at the
second and third harmonics, and refine our estimate. An average of
these values is used as the final pitch estimate.

Even under highly noisy conditions this simple method showed
to be effective because most of the noise usually exist in high fre-
quencies, and thus the peak of the fundamental frequency is usually
detectable. We have also used other methods of pitch estimation us-
ing autocorrelation or cepstrums, and have observed similar quality
estimates.

2.2. Noise estimation

The noise power at each harmonic frequency band can be estimated
by exploiting the spectral sparsity of voiced speech signals. This en-
ables us to maintain an accurate estimate of the noise even in frames
where the voiced speech is dominant.

First, we assume C}; to be a limited set of frequencies at zero-
crossings of the window centered at the k’th harmonic frequency.
Assuming the pitch is 1/7, and using a Hann window of width B,
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Fig. 2. Noise estimation of frequency band, k, centered at 2430Hz.
The vertical dashed lines correspond to the zero crossings of the filter
centered at frequency 2430Hz. The 4 red squares are the values used
to approximate the noise level in this frequency band.
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From this we can estimate the noise level at the k’th harmonic
frequency band by averaging the power spectrum at neighbor fre-
quencies corresponding to Cj.
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Eq. (6) follows from the assumption that speech and noise is
uncorrelated, and Eq. (7) is from Eq. (2) where we have shown that
the spectrum of a clean speech frame is zero at the zero crossings of
the windowing function. Fig. 2 illustrates this procedure.

To acquire a more stable estimate of the noise, we recursively
smooth our estimate over previous time frames. i.e.,

b () ol () ool ()

The tradeoff of this procedure is that we lose temporal resolution and
are more susceptible to abrupt changes in noise characteristics. We
use a « value of 0.8 in our experiments.
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2.3. Model of the harmonic filter

‘We now show how the noise estimate in Sec. 2.2 can be used to set
the gain, Ay, of the harmonic filter. Given that we want the filter
applied signal to be equivalent to the underlying signal, we have:
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We assume in Eq. (9) that the side lobe levels of the pitch filter
will be significantly small and can be ignored at all indices where
i # k. Eq. (10) is from the fact that Ay and W (0) are real, and that
we use a normalized filter such that W (0) = 1. Also, we assume that
the signal and noise is uncorrelated, i.e., | Y (f)]> = | Xm(f)]> +

| Em ()]

From the noise estimate Em(%), in the previous section, we
can calculate the gain in each harmonic peak of our filter. We lower
bound |A|? to a value greater than O such that the gain is posi-
tive. This half-wave rectification causes uneven spectral islands and
results in “musical noise”, which is a well known phenomenon in
spectral subtraction based algorithms. This artifact can be prevented
by restricting the values of | Ay |? such that it does not vary too much
across harmonics. We show in the next section that all of this can be
modeled as a simple least squares optimization problem.

2.4. Least squares formulation

From Eq. (10), we can formulate a least squares problem.

1 B/m)?

|Aq]? T Y/
w12 _ 1B/
| y= | T veme
Al | _ 1B/

Y (K/T)?

The first constraint is on X, i.e., § < xp < 1 for all k. The lower
bound ¢ controls how much noise reduction is performed, where
the smaller § means a stronger noise reduction is applied. In our
experiments we used a § value of le-4.

The second constraint is to enforce neighboring values of x to
be small such that the fluctuation of gains across harmonics is small,
ie., |z — axps1| <efork=1,.., K — 1.

We can apply this constraint as follows.

1 -1 0 0 0 - e 1
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Given all of this our least squares problem is simply,
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minimize ||x — y||* (11)
subject to Cx < ¢ (12)
§<x<1 (13)

which can be solved using any standard least squares solver.

2.5. Unvoiced speech

Although majority of speech is voiced, preserving unvoiced speech,
such as fricatives and plosives, helps increase the intelligibility.
Since our filter emphasizes the harmonic structure of voiced speech,
it is natural to believe that it will over-estimate the noise powers for
unvoiced speech and thus suppress the speech more than it should
for unvoiced speech.

A way to handle this would be to use a voice activity detector
that can classify frames into voiced, unvoiced and noise only frames.
Different levels of suppression can be used once a VAD can classify
the speech frame into one of these classes. One simple method that
we have used is to check the power level at low frequencies and the
difficulty in finding the pitch as an indicator of whether the speech
frame is voiced. If we estimate that the frame is not voiced, we
apply a higher lower bound than voiced frames, so that the level of
suppression is not as strong.

3. EVALUATION

Our algorithm can be divided into two stages: noise estimation us-
ing harmonic sparsity (Sec. 2.2) and a harmonic filter based on the
noise estimate (Sec. 2.3). To understand the effectiveness of each
stage properly, we first conducted experiments on the noise estima-
tion method itself, and then evaluated the overall speech enhance-
ment method. All methods were evaluated using 8 different speeches
in the CMU ARCTIC database [8], and each speech was combined
with either white or babble noise from the NOISEX-92 database [9].

To independently assess the quality of our noise estimation
method, we compared the similarity between the estimated and
true underlying noise power spectra, as done in [7]. We use the
median normalized squared error to assess how similar the estima-
tion is. Table 1 shows the comparison of our method against other
algorithms [4, 10, 11].

A shortcoming of this measure is that we cannot really com-
pare it against the true noise PSD, and it does not show how it
actually performs with speech enhancement algorithms. We have
therefore used these noise estimation algorithms on a spectral sub-
traction based speech enhancement method [12] and compared its
PESQ (Perceptual Evaluation of Speech Quality) measure. Various
studies have been conducted to provide different objective measures
on the quality of enhanced speech. The PESQ measure has shown
to have high correlation with subjective MOS (Mean Opinion Score)
measures conducted on listeners [13], and is the reason for selecting
it as a performance measure.

Fig. 3 shows the performance of noise estimation methods on
different noise type and power combinations. The harmonic based
noise estimation method shows good performance in most cases ex-
cept in low SNR babble noise environments in which the pitch of the
speaker is more difficult to detect.

To evaluate the overall speech enhancement method, we com-
pare the PESQ of our method against other literature. To achieve
a balanced comparison, we have selected a spectral subtraction
method [14], a Log-MMSE method [12] and a method that uses



Noise Martin [4] Cohen [10] Rangachari [11]  Harmonic
White 0.727 0.834 2.062 0.603
Babble 0.875 0.772 0.838 0.809

Table 1. Average MedSE of harmonic noise estimation compared
with other methods in literature.
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Fig. 3. Comparison of harmonic based noise estimation with other
noise estimation methods. A standard spectral subtraction speech
enhancement algorithm was used with the noise estimates.

subspace projection [15]. Fig. 4 shows how our algorithm yields
notable improvement over competing methods.

4. CONCLUSION

We have proposed a speech enhancement algorithm that relies on
the harmonic structure of the underlying speech. A filter is modeled
exploiting the pitch of the speaker and we have used it to reduce
any noise that lie between the harmonics of the speaker’s voice. The
noise at each harmonic frequency is estimated by sampling nearby
frequencies that should ideally be zero because of the window spec-
trum. The noise estimate and some additional constraints are for-
mulated as a least squares problem to find the optimal gain at each
harmonic frequency.

Our method benefits in that a real-time noise estimate can be
made in every time frame even if it is voiced speech. The harmonic
filter also preserves the underlying structure of the voiced speech
and thus helps reduce background noise without harming the speech
itself. We have focused mostly on exploiting spectral sparsity in this
paper, but one could look more into how this could be integrated with
previous noise estimation methods that exploit temporal sparsity of
speech.
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Fig. 4. Comparison of our harmonic speech enhancement method
with other algorithms
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