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ABSTRACT

We present a speech enhancement algorithm which is based on a
Bayesian Nonnegative Matrix Factorization (NMF). Both Minimum
Mean Square Error (MMSE) and Maximum a-Posteriori (MAP) es-
timates of the magnitude of the clean speech DFT coefficients are
derived. To exploit the temporal continuity of the speech and noise
signals, a proper prior distribution is introduced by widening the
posterior distribution of the NMF coefficients at the previous time
frames. To do so, a recursive temporal update scheme is proposed to
obtain the mean value of the prior distribution; also, the uncertainty
of the prior information is governed by the shape parameter of the
distribution which is learnt automatically based on the nonstation-
arity of the signals. Simulations show a considerable improvement
compared to the maximum likelihood NMF based speech enhance-
ment algorithm for different input SNRs.

Index Terms— Speech enhancement, NMF, MMSE, MAP

1. INTRODUCTION

Single channel speech enhancement has been a research topic for a
long time. A major outcome of these techniques is the improved
quality and reduced listening effort in the presence of a strong in-
terfering noise signal. In this paper, we study a Nonnegative Matrix
Factorization (NMF) based speech enhancement approach.

NMF is a popular factorization method which projects the given
nonnegative matrix onto its nonnegative basis vectors. NMF has
been used in a variety of applications in audio processing includ-
ing, but not limited to, blind source separation [1, 2, 3] and speech
enhancement [4, 5, 6]. For these applications, the magnitude (or
power) spectrogram of the speech signal, X , is factorized into its
basis matrix T and a time-varying NMF coefficients matrix V , such
that: X ≈ TV .

The temporal dependencies of the audio signals is ignored in the
basic NMF. Moreover, an important challenge in NMF based speech
enhancement approaches is that the basis matrices for speech and
noise may be quite similar. Using the temporal continuity of the un-
derlying sources has been shown to be promising to overcome this
problem. In [4], it is assumed that log of the NMF coefficients corre-
sponding to each basis vector follow a Normal distribution; hence, a
regularized NMF is proposed to enhance the noisy speech which has
separate training and enhancement stages. The statistics of the Nor-
mal distributions are assumed to be fixed and are obtained in the end
of the training stage. Another approach is proposed in [5] in which
the temporal activity of the basis vectors are modeled using a hidden
Markov model; in this approach, speech is modeled using multiple
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nonnegative dictionaries, and noise is modeled using a single dictio-
nary.

In our previous work [6], a linear MMSE filter was proposed
to enhance the noisy speech; though, no explicit prior density func-
tion was assumed for the parameters of interest. In this paper, we
explicitly assign a prior distribution, in the form of a Gamma den-
sity function, to the NMF coefficients. From the available Bayesian
NMF approaches, e.g. [7, 8], we use [7] and extend the proposed
Bayesian NMF to model the noisy signal, and we derive the MMSE
filter to estimate the clean speech component. To employ the time
continuity of the speech and noise signals, the posterior distribution
of the NMF coefficients at the previous time frames are widened
and are used as the prior distribution for the current time frame. Fi-
nally, we derive the Maximum a-Posteriori (MAP) estimator using
the aforementioned prior distribution. The proposed estimators lead
to superior results for the evaluated noise types compared to the com-
peting algorithms. The rest of the paper is organized as follows: In
Section 2, the exploited probabilistic NMF is reviewed. The speech
enhancement framework is outlined in Section 3. In Sections 4 and
5, the MMSE and MAP estimators are derived; performance evalua-
tion is given in Section 6.

2. REVIEW OF PROBABILISTIC NMF

In this section, we review the probabilistic NMF which is proposed
in [7]. The following model is considered in the aforementioned to
perform NMF:

X (k, τ) =
�

i
Z (k, i, τ) ,

Z (k, i, τ) ∼ PO (Z (k , i , τ) ; Λ (k , i , τ)),
(1)

where Z (k, i, τ) are latent sources, PO (z;λ) = exp(z log λ −
λ − log Γ (z + 1)), with Γ (z + 1) = z! as the Gamma function,
denotes the Poisson distribution, and Λ (k, i, τ) = T (k, i)V (i, τ).
Consequently, X (k, τ) is assumed to have a Poisson distribution
with mean value equal to

�
i
Λ (k, i, τ). For the speech enhance-

ment purposes, X (k, τ) = |Y (k, τ)| where Y (k, τ) denotes the
DFT coefficient for frequency bin k and time-frame τ of the noisy
signal.

2.1. NMF using Maximum Likelihood (ML) Estimation

An Expectation Maximization (EM) algorithm is proposed in [7] to
find the ML estimate of T and V in (1). In the expectation step, the
expected values of the latent sources, conditioned on X,T and V
(Z̄ (k, i, τ)) are calculated as:

Z̄ (k, i, τ) = X (k, τ)
Λ (k, i, τ)
�

i′ Λ (k, i′, τ)
. (2)
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The maximization step involves maximizing of

Q =
�
k,i,τ

�−Λ (k, i, τ) + Z̄ (k, i, τ) log (Λ (k, i, τ))
�
, (3)

w.r.t. T and V , which after combining with (2) results to the follow-
ing multiplicative rules for T and V that we refer to as ML-NMF:

T (k, i) ← T (k, i)

�
τ
V (i,τ)
�
X(k,τ)/

�
i′ Λ(k,i′,τ)

��
p
V (i,p)

,

V (i, τ) ← V (i, τ)

�
k
T (k,i)
�
X(k,τ)/

�
i′ Λ(k,i′,τ)

��
q
T (q,i)

,

(4)

these updates are performed in an iterative manner until conver-
gence.

2.2. Variational Bayes for Bayesian Inference

In the Bayesian framework, T and V are considered as some random
variables; the following Gamma prior distributions are considered
for the basis elements T (k, i) and NMF coefficients V (i, τ):

V (i, τ) ∼ G (V (i, τ) ; a (i, τ) , b (i, τ) /a (i, τ)) ,

T (k, i) ∼ G (T (k, i) ; c (k, i) , d (k, i) /c (k, i)) ,
(5)

in which G (x; k, θ) = exp((k − 1) log x − x/θ − log Γ (k) −
k log θ) denotes the Gamma density function with θ as the scale pa-
rameter. Since the exact Bayesian inference turns out to be difficult,
a Variational Bayes has been proposed in [7]. Hence, in an itera-
tive scheme the current parameters of the posterior distributions of
Z (k, :, τ) are used to update the parameters of the posterior distri-
butions of T (k, i) and V (i, τ), and these new parameters are used
to update the posterior distributions of Z (k, :, τ) in the next iteration
(’:’ denotes ’all the indices’). The iterations are carried on until con-
vergence. The posterior distributions for Z (k, :, τ) are multinomial
density functions, while for T (k, i) and V (i, τ) they are Gamma
density functions. Here, we only mention the update equations of
the expected values of Z (k, :, τ) as we need them later:

E (Z (k, i, τ) | X) =
eE(log(T (k,i)V (i,τ))|X)�
i=1

eE(log(T (k,i)V (i,τ))|X)
X (k, τ) .

(6)
Full details of this framework can be found in [7].

3. SPEECH ENHANCEMENT FRAMEWORK

In the rest of the document, we denote the τ th column of a ma-
trix X by x.τ . Our algorithm consists of training and enhancement
steps. For both steps, the given time domain signal is segmented,
windowed, and transformed into the frequency domain to obtain
the spectrogram. During the training step, where the training clean
speech and noise signals are given, NMF is applied to the magni-
tude spectrogram of the clean speech signal |S| (where |·| is used to
show the element-wise absolute value) and noise signal |N | to ob-
tain the speech basis matrix, TS , and noise basis matrix, TN . For the
enhancement, an overlap-add framework is utilized to process each
frame of the noisy speech, y.τ , separately. The enhancement step
depends on the estimator type which is discussed in the following
sections.

4. MMSE ESTIMATOR

We model the magnitude spectrogram of the clean speech and noise
signals by (1). Using the Bayesian framework outlined in Section
2.2, the posterior distributions of the speech and noise basis matri-
ces, TS and TN , are found using the training data. For the enhance-
ment, a complete basis matrix is built as T = [TS TN ] with the
concatenated distribution parameters of TS and TN . For simplic-
ity we assume that the training sets are so rich that the distribution
of T remains constant for the period of the test segment. We as-
sume that the magnitude spectrogram of the noisy speech signal is
approximated by the sum of the speech and noise magnitude spec-
trograms, i.e., |y.τ | ≈ |s.τ |+ |n.τ |. Note that although this assump-
tion is not theoretically well justified, it is a common assumption in
NMF based speech processing [1, 2, 4, 5, 6], and has led to good
results in practice. Let us denote the number of the basis vectors
for speech as I and for noise as J ; the first line of (1) is now writ-

ten as: |Y (k, τ)| = �I+J

i=1
Z (k, i, τ). Considering a proper prior

distribution for the NMF coefficients (see Section 4.1), the Bayesian
framework is applied to |y.τ | to find the posterior distributions of the
NMF coefficients U (i, τ) and latent sources Z (k, i, τ).

The MMSE estimate [9, Sec 11.4] of the magnitude of the
speech DFT coefficients is given by the conditional expectation of
the sum of the corresponding latent sources as:�|S (k, τ)| = E (|S (k, τ)| | |y.τ |) = E

�
I�

i=1

Z (k, i, τ) | |y.τ |
�

.

(7)
Exploiting the properties of the conditional expectation, the MMSE
estimate in (7) is written as:

�|S (k, τ)| =
I�

i=1

E (Z (k, i, τ) | |y.τ |) . (8)

From (6), we also have:

E (Z (k, i, τ) | |y.τ |) =

eE(log(T (k,i)U(i,τ))||y.τ |)�I+J

i=1
eE(log(T (k,i)U(i,τ))||y.τ |)

|Y (k, τ)| .
(9)

Inserting (9) in (8), we obtain:

�|S (k, τ)| =
�I

i=1
eE(log(T (k,i)U(i,τ))||y.τ |)�I+J

i=1
eE(log(T (k,i)U(i,τ))||y.τ |)

|Y (k, τ)| . (10)

The time domain enhanced signal is reconstructed using the noisy
phase information.

4.1. Assigning Informative Priors for Bayesian NMF

During the training, we assign some sparse and broad prior distri-
butions to T and V according to (5). For this purpose, c and d are
chosen such that the mean of the prior distribution for T is small
and its variance is very high. On the other hand, a and b are cho-
sen such that the prior distribution of V has a mean corresponding
to the scale of the data and a high variance to represent uncertainty.
To have good initializations for the Variational Bayes approach, the
ML-NMF from (4) is applied first (e.g. for 10 iterations), and the
obtained estimates of T and V are used as the initial mean values for
the posterior distributions of T and V .

In the enhancement stage, to use the temporal correlation of the
noise and speech signals, we use a data-driven prior for the NMF
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coefficients U . To do so and also to account for the nonstationarity
of the signals, a proper prior for U is obtained by widening the pos-
terior distributions of U from the previous time frames. Hence, the
posterior distributions of U at t = 0, 1, . . . , τ − 1 are used to obtain
a prior distribution for time frame t = τ . Denoting this prior dis-
tribution as U (i, τ) ∼ G (U (i, τ) ; a (i) , b (i, τ) /a (i)) , we have:

E (U (i, τ)) = b (i, τ) ,

�
var (U (i, τ))

E (U (i, τ))
=

1�
a (i)

. (11)

We assign the following recursively updated mean value, which is
conditioned on all the observations at t = 0, 1, . . . , τ − 1, for the
prior distribution:

b (i, τ) = αE
�
U (i, τ − 1) |

��y.(τ−1)

���+ (1− α) b (i, τ − 1) ,

(12)

here, the value of α controls the smoothing level to obtain the prior.
In (11), different shape parameters are used for the speech and noise
NMF coefficients, i.e., a (1 : I) = aspeech and a (I + 1 : I + J) =
anoise. In this form of prior, the ratio between the standard devia-
tion and the expected value is the same for all the NMF coefficients
of a source, independent of time. The shape parameter a represents
the uncertainty of the prior which in turn corresponds to the station-
arity of the signal being processed. We can learn this parameter in
the training stage using the clean speech or noise signals. For this
purpose, at the end of the training stage, the shape parameter of the
posterior distributions of all the NMF coefficients are calculated and
their mean value is taken for this purpose.

5. MAP ESTIMATOR

In this section, we derive the MAP estimate of the magnitude of
the speech DFT coefficients. For this approach, the maximum like-
lihood estimates of the speech and noise basis matrices, TS and
TN , are obtained during the training step using (4). Now, the ba-
sis matrix for the observed noisy speech, T , is obtained as T =
(TS TN ), and it is kept fixed during the enhancement. In the en-
hancement step, to perform NMF as |y.τ | ≈ Tu.τ , we assign a
Gamma prior distribution as G (Up (i, τ) ; a (i) , b (i, τ) /a (i)) to
the NMF coefficient Up (i, τ). In the following, we aim to find
the MAP estimate of the NMF coefficients, denoted by U (i, τ),
using the mentioned prior distribution. We use the EM algorithm
for this purpose. The expectation step is identical to Section 2.1
[10, p.454], so Z̄ (k, i, τ) = |Y (k, τ)|Λ (k, i, τ) /

�
i′ Λ (k, i′, τ)

where Λ (k, i, τ) = T (k, i)U (i, τ). In the maximization step, we
maximize an objective function Q which is the sum of two terms:
the first term corresponds to the likelihood of the observations (3),
and the second term involves the likelihood of the NMF coefficients
under the given prior distribution:

Q =
�

k,i,τ

�−Λ (k, i, τ) + Z̄ (k, i, τ) log (Λ (k, i, τ))
�

+
�

i,τ

�
(a (i)− 1) log U (i, τ)− U(i,τ)

b(i,τ)

�
,

(13)

Taking derivative of (13) w.r.t. U (i, τ) and setting it to zero yields
the following iterative update rule for U (i, τ):

L(i, τ) = U(i, τ)
�
k

T (k, i)

	
|Y (k, τ)| /

�
i′

Λ(k, i′, τ)



,

U(i, τ) ← max (L(i, τ) + a (i)− 1, ε)�
q
T (q, i) + 1/b (i, τ)

, (14)

where ε is a small positive number to ensure that we get nonnegative
values for U . It is straightforward to show that this stationary point

is the maximum if a (i) ≥ 1. (14) is performed iteratively until
convergence. The enhanced speech component can be obtained now
using a Wiener type gain as:

�|S (k, τ)| =
�I

i=1
Λ (k, i, τ)�I+J

i=1
Λ (k, i, τ)

|Y (k, τ)| . (15)

Choosing a(i) = 1 and b(i, τ) =∞, (14) results to the ML estimate
of the NMF coefficient U(i, τ). In this case, applying (15) will result
to the speech estimate using the ML-NMF which is considered in the
simulations.

5.1. Assigning Informative Priors for MAP Estimator
We assign a prior distribution to NMF coefficients in the form of
Up (i, τ) ∼ G (Up (i, τ) ; a (i) , b (i, τ) /a (i)), for which

E (Up (i, τ)) = b (i, τ) ,

�
var (Up (i, τ))

E (Up (i, τ))
=

1�
a (i)

. (16)

The mean value b (i, τ) is obtained by recursively smoothing the
MAP estimates of the NMF coefficients at t = 0, 1, . . . , τ − 1 as:

b (i, τ) = βU (i, τ − 1) + (1− β) b (i, τ − 1) . (17)

To have an estimate of the shape parameter a, we may use the
NMF coefficients matrix V at the end of the training stage. Esti-
mating the mean and variance of all the elements of V and calculat-
ing their ratio as the shape parameter did not result to a reasonable
number; the reason might be that in each time frame only some of
the coefficients have high contribution to explain the data and only
their variation is important. Hence, we project the signal onto its
basis vectors and measure the variation of the effective coefficients.
Therefore, at the end of the training step, each time frame of the
training noise signal, |n.τ |, is projected onto each of the noise basis
vectors by simple inner product normalized by the norm of the basis
vector:

P (i, τ) =
|n.τ |� t.i

t�.i t.i
,

where t.i is the ith basis vector, ith column of the basis matrix TN .
Then, m highest values are chosen (we use m = 5), and their aver-
age value is calculated and smoothed over the surrounding M frames
(a simple averaging is used for this purpose) which is represented
by μP (t). M is the number of the frames in which the signal is
assumed to be stationary. Finally, the variance of the m selected
P (i, τ) is calculated in the entire block of M frames and is called
σ2
P (t). The parameter anoise is now obtained as:

a (t) =
μ2
P (t)

σ2
P (t)

, anoise =
1

N

N�
t=1

a (t), (18)

where N is the number of the frames of the training data. aspeech

is obtained using a similar procedure. In practice, the result of (18)
was similar to the estimate obtained in Section 4.1, which in general
may need some tuning to get the best results for the enhancement.

6. EVALUATIONS

We evaluate and compare the proposed MMSE and MAP estimators
with the ML-NMF, LMMSE estimator from [6], and a Wiener filter-
ing in which the noise PSD was estimated using [11]. The imple-
mentation of the LMMSE and Wiener filters, and data preparation
were done similarly to [6]. We used speech from the Grid Corpus
[12] and noise from the NOISEX-92 databases. All the signals were
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Table 1: SDR improvements in dB averaged over the babble and
factory noises

Input SNR ML-NMF LMMSE Wiener MAP MMSE

0 dB 1.2 2.7 1.5 2.4 2.4

5 dB 0.7 2.7 1.7 3.1 3.2
10 dB -1 1.7 1.1 1.8 2.5

Table 2: Segmental speech SNR (SNRsp) and Segmental Noise Re-
duction (SegNR) in dB averaged over the babble and factory noises

ML-NMF LMMSE Wiener MAP MMSE

0 dB
SNRsp 6.8 8.6 4.9 8.9 10.1
SegNR 6.8 6.7 13.2 6.3 5.6

5 dB
SNRsp 7.8 10 8.6 9.5 11.1
SegNR 6.6 6.7 10.4 8.5 7.2

10 dB
SNRsp 8.9 11.4 12.7 10.2 12.1
SegNR 6.3 6.7 7.9 10.4 8.6

down-sampled to 16 kHz. The speech was degraded by adding bab-
ble or factory noise at three different SNRs: 0 dB, 5 dB, and 10
dB. The data was scaled properly to reduce the rounding error of
the Bayesian framework which is a side effect of the Poisson model
assumption. The overlap-add approach with Hann window was uti-
lized to process the noisy speech; the time frames had a length of
512 samples with 50% overlap. A separate model was trained for
each noise type, and one speaker independent model was trained for
the speech signal; separate train and test sets were used for both
speech and noise signals. 80 sentences (10 sentences from 4 male
and 4 female speakers) were considered in the test set. The results
are averaged over all the test set and both noise types. 60 basis vec-
tors for speech and 100 basis vectors for each noise were trained.
afactory = 10 and ababble = 8 were obtained and used as the shape
parameters for both MMSE and MAP estimators for the factory and
babble noises, respectively. Even though using the approach from
Section (4.1), or (5.1), we get aspeech ≈ 5, applying the correspond-
ing prior distribution did not improve the performance; hence, in our
simulations we set aspeech = 1 and bspeech =∞ to use an uninfor-
mative prior for speech in (13).

The performance of the speech enhancement algorithms are
evaluated using the Source to Distortion Ratio (SDR); From the
three measures introduced in [13], we present only SDR due to lack
of space; SDR represents the overall quality of the enhanced speech
where ”having no artifacts” and ”noise reduction” are equally impor-
tant. We also compare the algorithms using segmental speechSNR
(SNRsp), and segmental noise reduction (SegNR) which are calcu-
lated in a shadow filtering framework as [6, 14]. These measures are
presented to study the ”introducing artifacts” and ”reducing noise”
aspects of the enhancement algorithms, separately.

Table 1 shows the SDR improvements in dB which is aver-
aged over the babble and factory noises. MMSE estimator results
to the highest improvements for high input SNRs, while results
of the LMMSE approach are better for 0 dB input SNR. MMSE
estimator results to slightly better SDR improvements than the
MAP estimator. Both MMSE and MAP filters give superior re-
sults compared to the ML-NMF and Wiener filtering. We found
the smoothing coefficient α (Eq. (12)) effective for the enhance-
ment performance. Choosing α = 1, which means having no
smoothing to obtain the mean value for the prior distribution, re-
sults to better SDR improvements for high input SNRs but degrades
the performance for low input SNRs. In contrast, increasing the
smoothing level will improve the results for low input SNRs but
degrade it for high input SNRs. We used α = 0.6 which gave a
compromise for both low and high input SNRs. This behavior was
not observed for the MAP estimator, and we used β = 0.9 (Eq.

(17)). Table 2 shows the segmental speechSNR (SNRsp), and seg-
mental noise reduction (SegNR), averaged over both the babble and
factory noises, at different input SNRs. For both measures a high
value is desired, and SNRsp is inversely proportional to the speech
distortion. MMSE estimator results to higher SNRsp than MAP
estimator, but this is reversed for SegNR. Compared to LMMSE,
mostly MMSE gives higher SNRsp and SegNR. These results were
confirmed by informal listening. Some audio examples are available
at http://www.ee.kth.se/˜nmoh/se_using_bnmf.

In terms of the complexity, MMSE estimator requires more com-
plicated training procedure than the ML and MAP estimators. How-
ever, the computational time for the enhancement step is quite simi-
lar for all of them.

7. CONCLUSION

We presented a speech enhancement algorithm using a Bayesian
NMF framework. We derived both the MMSE and MAP estima-
tors. To exploit the time continuity of the noise signals, we used
data-driven prior distributions for the noise NMF coefficients. The
proposed estimators were evaluated using the Source to Distortion
Ratio (SDR). The MMSE estimator was found to be the superior
which outperformed the standard NMF algorithm by 2.4 dB higher
SDR improvement, averaged over all the evaluated input SNRs and
noise types. The MAP estimator led to similar results as the MMSE
at low input SNRs, but its performance was worse for higher input
SNRs.
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