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ABSTRACT

Single-microphone speech enhancement algorithms that em-
ploy trained codebooks of parametric representations of speech
spectra have been shown to be successful in the suppression of
non-stationary noise, e.g., in mobile phones. In this paper, we in-
troduce the concept of a context-dependent codebook, and look at
two aspects of context: dependency on the particular speaker using
the mobile device, and on the acoustic condition during usage (e.g.,
hands-free mode in a reverberant room). Such context-dependent
codebooks may be trained on-line. A new scheme is proposed to
appropriately combine the estimates resulting from the context-
dependent and context-independent codebooks under a Bayesian
framework. Experimental results establish that the proposed ap-
proach performs better than the context-independent codebook in
the case of a context match and better than the context-dependent
codebook in the case of a context mismatch.

Index Terms— Speech enhancement, noise reduction, context-
dependent, codebook, linear prediction

1. INTRODUCTION

Single channel speech enhancement is a challenging problem with
several important applications [1]. With the widespread use of mo-
bile communication, the problem of enhancing noisy speech has
gained substantial importance. As background noise is common in
typical conversation environments such as in traffic, restaurants etc.,
speech enhancement has become an important component in mobile
phones. Enhancement of speech is also relevant in the use of hearing
aids [2], and has a significant role as a pre-processor for providing
a clean input to speech recognition systems whose performance is
affected by the noise level in the input [3] .

There exist several single-channel speech enhancement algo-
rithms in the literature [1]. Most of them work well in the case
of stationary noise. However, their performance severely degrades
when dealing with non-stationary noise. Codebook-based speech
enhancement techniques [4, 5] have been proven to perform well
in the presence of non-stationary noise. These techniques rely
on trained codebooks of speech and noise LP vectors. The early
codebook-based methods employed speech codebooks trained us-
ing several speakers, and are speaker independent (SI) in nature.
Speaker dependent (SD) codebooks, which are codebooks generated
using speech training data from a single speaker, were introduced
in [6]. Such SD codebooks are relevant in the context of mobile
communications and/or certain speech recognition systems where
the device is used by a single user for most of the time, and may

be trained on-line. It has been shown that speaker dependency in
the SD codebooks also translates into a noticeable improvement in
speech enhancement when compared to using SI codebooks in the
codebook based Bayesian speech enhancement framework [6].

The contribution of this paper is two-fold. Firstly, we generalize
the notion of speaker dependency to that of context dependency, and
consider two aspects of the context: the speaker using the device, and
the acoustic conditions in the room. Secondly, we introduce a new
Bayesian estimation approach to provide a solution that can exploit
context dependency while remaining robust to a context mismatch.

When a speech codebook is adapted on-line, e.g., during peri-
ods when there is little or no noise, the codebook is not only adapted
to the particular speaker’s voice but to the entire context, which may
include the prevailing acoustic conditions, the microphone character-
istics, etc. The acoustic conditions will vary depending on whether
the phone is in hands-free or hand-set mode, and when in hands-
free mode, the conditions are determined by the amount of rever-
beration in the room. In this paper, we restrict the context to in-
clude the speaker’s voice and the prevailing acoustic conditions as
these may be expected to have the largest impact on performance.
In the absence of context-specific information, the default codebook
is speaker-independent and trained for hand-set operation, where the
speaker is close to the microphone.

It is intuitive to expect that a context-dependent (CD) code-
book will provide significantly better performance than a context-
independent (CI) codebook. However, it is important that a method
that exploits context dependency is robust to a context mismatch,
e.g., when used by a different person or in a different acoustic
condition. As codebook adaptation can take place only when the
signal-to-noise ratio (SNR) is sufficiently high, it is not possible
to adapt the speech codebook to the new context if the mismatch
occurs in a noisy environment. In a practical system, the CD and CI
codebooks will need to co-exist.

In this paper, we propose a new Bayesian approach that provides
a framework to combine the estimates resulting from the CD and the
CI codebook in a manner that exploits the benefits of both code-
books, and is robust to a mismatch between the context on which the
CD codebook is trained and the context that is encountered during
testing. Ideally, such a method should result in an estimate that is
better than the estimate obtained using a CI codebook in the event
of a context match, and better than the estimate obtained using a CD
codebook in the event of a context mismatch.

The remainder of the paper is organized as follows. Section 2
describes the signal model. The proposed Bayesian approach is de-
veloped in Section 3. Section 4 presents experimental results fol-
lowed by conclusions in Section 5.
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2. SIGNAL MODEL

We consider an additive noise model, where the noisy signal y(n)
can be written as

y(n) = x(n) + w(n) (1)

where n is the time index, x(n) is the clean speech signal and w(n)
is the noise signal. Let y = [y(1), . . . , y(N)]T denote a vector
of noisy observations of length N , corresponding to a short-time
segment.

Prior information about the speech and noise signals is cap-
tured in the form of trained codebooks of speech and noise autore-
gressive (AR) parameters. For a given short time segment y, let
θx = (ax0 , . . . , axp) denote the vector of speech AR parameters,
where ax0 = 1 and p is the speech AR model order, and let gx
denote the variance of the speech excitation signal. Similarly, let
θw = (aw0 , . . . , awq ) denote the vector of noise AR parameters,
where aw0 = 1 and q is the noise AR model order, and let gw de-
note the variance of the noise excitation signal.

Let m = [θx, θw, gx, gw]. The goal of codebook-based speech
enhancement algorithms is to obtain an estimate of m using the
speech and noise codebooks, and given the noisy observation. A
maximum-likelihood estimate is obtained in [4] and a Bayesian min-
imum mean-squared error (MMSE) estimate in [5]. Once such an
estimate is obtained, it can be used to construct an estimate of the
speech and noise power spectral densities (PSDs) as follows:

P̂x(ω) =
gx

|Ax(ω)|2 and P̂w(ω) =
gw

|Aw(ω)|2 , (2)

where Ax(ω) =
∑p

k=0 axke
−jωk and Aw(ω) =

∑q
k=0 awke

−jωk.
These PSDs can now be used to construct a Wiener filter to enhance
the noisy speech in the frequency domain:

H(ω) =
P̂x(ω)

P̂x(ω) + P̂w(ω)
. (3)

In addition to exploiting prior information about speech and noise,
the benefit of the codebook-based approaches lies in the frame-by-
frame estimation of the optimal gain levels gx and gw, which results
in good performance under practical non-stationary noise conditions.

As explained in Section 1, estimation accuracy can be improved
by considering speech codebooks that are context-dependent. In the
following section, a new Bayesian estimation approach is developed
that obtains the MMSE estimate of m given the noisy observation, a
CD speech codebook, a CI speech codebook and a noise codebook.
By casting the problem in a Bayesian framework, estimates from
the context dependent and independent codebooks are automatically
combined in an optimal (in the MMSE sense) manner given the noisy
observation.

3. BAYESIAN AR PARAMETER ESTIMATION

As explained in Section 2, the random variable m represents a model
describing the speech and noise PSDs that constitute the observed
noisy PSD. We seek an expression for m̂ = E[m|y]. Consider the
following two hypotheses:

• H0 : CD codebook is the appropriate codebook

• H1 : CI codebook is the appropriate codebook

The MMSE estimate of m can be written as

m̂ = E[m|y] =
1∑

k=0

p(Hk|y)E[m|y, Hk] (4)

Let M be the collection of all models. In this paper, M = MCD ∪
MCI, where MCD is the collection of all context dependent models
and MCI is the collection of all context independent models. In the
following, we assume that only the speech codebook is adapted to
the context. The extension to the case where the noise codebook is
also context dependent is straightforward. The set MCD consists
of all quadruplets [θix, θ

j
w, gx, gw], where θix is the ith entry from

the CD speech codebook, and θjw is the jth entry from the noise
codebook. The gain terms, as mentioned earlier, are computed on-
line for each combination of θjx and θjw. Thus, MCD has NCD ×
Nw models, where NCD is the number of entries in the CD speech
codebook and Nw is the number of entries in the noise codebook.
The set MCI is constructed analogously and has NCI×Nw models,
where NCI is the number of entries in the CI speech codebook. We
have for k = 0, 1

E[m|y, Hk] =
∑

m∈M
m p(m|y, Hk)

=
∑

m∈M
m

p(y|m,Hk) p(m|Hk)

p(y|Hk)
(5)

Given a model m, y is conditionally independent of Hk. Thus,

p(y|m,Hk) = p(y|m), k = 0, 1. (6)

Under a Gaussian AR model, the likelihood p(y|m) is given by

p(y|m) =
1

(2π)N/2|Rx +Rw|1/2 exp

(
−yT (Rx +Rw)

−1y

2

)
,

(7)
where Rx = gx(B

T
x Bx)

−1 , Rw = gw(B
T
wBw)

−1, Bx is the
N × N lower triangular Toeplitz matrix with [θx, 0, . . . , 0]

T as the
first column and Bw is the N ×N lower triangular Toeplitz matrix
with [θw, 0, . . . , 0]

T as the first column. The logarithm of the like-
lihood p(y|m) can be efficiently computed in the frequency domain
following the approach of [5]. The gain terms that maximize the
likelihood can be computed as in [5].

Next, we consider the term p(m|Hk) in equation (5). Under
H0, the speech signal in the observed segment is best described by
the CD codebook, and therefore we have

p(m|H0) =
1

|MCD| , ∀m ∈ MCD

= 0, otherwise. (8)

where |MCD| is the cardinality of MCD, and we assumed that all
context dependent models are equally likely. Similarly,

p(m|H1) =
1

|MCI| , ∀m ∈ MCI

= 0, otherwise. (9)

where |MCI| is the cardinality of MCI. From (5) and (8), we have

E[m|y, H0] =
1

|MCD|
∑

m∈MCD

m
p(y|m)

p(y|H0)
(10)

where

p(y|H0) =
1

|MCD|
∑

m∈MCD

p(y|m) (11)

Similarly, from (5) and (9), we have

E[m|y, H1] =
1

|MCI|
∑

m∈MCI

m
p(y|m)

p(y|H1)
(12)
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where

p(y|H1) =
1

|MCI|
∑

m∈MCI

p(y|m) (13)

To obtain m̂ using (4), now only p(Hk|y) needs to be determined,
which can be obtained as

p(Hk|y) = p(y|Hk)p(Hk)

p(y)
, k = 0, 1, (14)

where

p(y) =

1∑
k=0

p(y|Hk) (15)

and p(y|H0) and p(y|H1) are given by the equations (11) and (13),
respectively. The prior probabilities in the absence of any observa-
tion are assumed to be equal so that p(H0) = p(H1) = 0.5. The
MMSE estimate m̂ is obtained using (10), (12), and (14) in (4). The
speech and noise PSDs corresponding to m̂ can be obtained using
(2), and the Wiener filter from (3).

4. EXPERIMENTAL RESULTS

In this section, we present the details and results of the experiments
performed with the following two objectives. Firstly, to investigate
the benefits of context dependency and secondly, to validate the ro-
bustness of the proposed Bayesian approach when there is a mis-
match between the training and testing context. As mentioned in
Section 1, in this paper, context refers to the speaker and acous-
tic conditions. Thus, the CD codebook is trained for a particular
speaker’s data and in a hands-free recording set-up. The CI code-
book is trained with data from several speakers and in a hand-set
recording set-up. In practice, the CI codebook would be shipped
with the mobile device and the CD codebook would result from
adaptation during usage. For the experimental analysis in this pa-
per, it is assumed that the CD codebook has been fully adapted.

4.1. Codebook training

CI and CD codebooks of speech AR coefficients were generated us-
ing training data from Wall Street Journal (WSJ) speech database
[7]. 180 distinct training utterances of duration around 5 sec each
were used in generation of each of the codebooks. In both the cases,
the speech content was the same while the number of speakers used
for training varied. To generate the CI codebook, utterances from 50
different speakers, 25 male and 25 female were used. The training
utterances for the CD codebook were from a single male speaker,
and were convolved with a recorded impulse response at a distance
of 50 cm from the microphone in a reverberant room (T60 = 800 ms).
Using the training utterances, around 55000 LP coefficients were ex-
tracted from Hann-windowed segments of size 256 samples, with a
50 percent overlap at a sampling frequency of 8 kHz. The codebooks
were trained using LBG algorithm [8] with the root mean squared
log-spectral distortion (LSD) as the error criterion. The codebook
size was fixed at 256 entries. Larger codebooks did not result in a
significant increase in performance.

The noise codebook was trained in a similar fashion. To deal
with different noise types when using trained noise codebooks, a
classified noise codebook scheme can be employed as in [4]. In
this paper, we assume that the correct noise codebook is available,
to retain the focus on the study of the benefit and robustness of the
proposed Bayesian scheme to exploit context dependency.

4.2. Test scenarios

The test data consisted of noisy files generated by adding babble
noise at an SNR of 5 dB to ten clean utterances from the WSJ
database. The content of the test utterances was different from that
of the training utterances. Depending on the test scenario, the ut-
terance were selected from either the same speaker (referred to in
the following as speaker A) whose data was used to train the CD
codebook or from a different speaker (referred to in the following
as speaker B). Furthermore, again depending on the test scenario,
the test data was either convolved with the impulse response corre-
sponding to the hands-free (HF) recording conditions considered in
the training, or to the hand-set (HS) condition. Four test scenarios
were considered as tabulated below.

Scenario Speaker type Recording condition

1 A HF

2 B HS

3 B HF

4 A HS

Table 1. Composition of the test files in the different test scenarios. The
CD codebook is trained on data from speaker A and in HF mode. The CI
codebook is trained on data from speaker B and in HS mode.

The input noisy files under each test scenario were enhanced us-
ing the CD codebook alone, the CI codebook alone, and using the
proposed Bayesian approach that optimally combines the estimates
resulting from the CD and CI codebooks. Clearly, for certain scenar-
ios in Table 1, the CD codebook may be expected to provide the best
performance, and for certain others the CI codebook will perform
well. We expect the proposed approach to be robust in all scenarios;
specifically, for each scenario, its performance should be better than
the worst of the two (CD or CI), and close to the performance of the
best of the two.

The performance of these three processing schemes was quan-
tified using the improvement in segmental SNR (SSNR) referred to
as ΔSSNR (in dB) and the improvement in the PESQ [9] measure,
referred to as ΔPESQ, averaged over the ten files. While PESQ was
not originally developed for evaluating the performance of speech
enhancement algorithms, it has been shown to have a good correla-
tion to subjective quality, and including these results also serves to
validate PESQ as a measure in this context.

4.2.1. Test files from Speaker A in HF mode

This is the best-case scenario for the CD codebook as it is adapted
to speaker A in HF mode, and the results are shown in Table 2.

CD CI Proposed

ΔSSNR 5.9 4.1 5.2

ΔPESQ 0.17 -0.03 0.11

Table 2. Results for the best-case scenario. Both the speaker and acoustic
conditions are identical to those for the CD codebook.

Clearly, the CD codebook performs better than the CI codebook
for both the measures, with a difference of 1.8 dB in ΔSSNR and
0.2 in the case of ΔPESQ, illustrating the benefit of context depen-
dency. Note that ΔSSNR and ΔPESQ are not absolute values but the
improvement compared to the noisy input. The proposed Bayesian
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approach adapts to the context and its performance is closer to that
of the CD codebook, as expected. The difference in performance be-
tween the proposed approach and CD shows the penalty to be paid
for the ensuring robustness to a context mismatch. The benefit of
this robustness will become apparent in the next test scenario. In
any case, the proposed approach performs significantly better than
CI, by around 1.1 dB in ΔSSNR and 0.1 in ΔPESQ.

4.2.2. Test files from Speaker B in HS mode

This is the worst-case scenario for the CD codebook, and Table 3
summarizes the results. The results for CD are poor compared to CI,

CD CI Proposed

ΔSSNR 3.0 4.8 4.2

ΔPESQ 0.12 0.22 0.22

Table 3. Results for the worst-case scenario. Both the speaker and acoustic
conditions are different from those for the CD codebook.

as expected. Once again, the proposed approach adapts according to
the context and its performance is close to that of the CI codebook.
The benefit of the proposed codebook over CD in the event of a con-
text mismatch is 1.2 dB in ΔSSNR and 0.1 in ΔPESQ. The current
and previous test scenarios summarize the robust performance of the
proposed approach in the event of a context match as well as a con-
text mismatch.

4.2.3. Test files from Speaker B in HF mode

This scenario corresponds to a partial context match, where the test
files are from a different speaker than the one on which the CD code-
book is adapted, but the recordings conditions match. Table 4 shows

CD CI Proposed

ΔSSNR 3.1 4.3 4.0

ΔPESQ 0.02 0.1 0.1

Table 4. Results for a partial context match. The acoustic conditions are
identical to those for the CD codebook, but the speaker is different.

that the CI codebook performs better than the CD codebook in this
case, highlighting the dominance of the effect of accurate speaker
modeling over the dependency on acoustic conditions. Again, the
proposed approach automatically adapts to the context and its per-
formance is close to that of the CI codebook.

4.2.4. Test files from Speaker A in HS mode

The final scenario also corresponds to a partial context match, where
the test files are from the same speaker as the one on which the CD
codebook is adapted, but the recordings conditions do not match.
Unlike in the previous experiment, the performance of the CI code-

CD CI Proposed

ΔSSNR 6.0 5.1 5.6

ΔPESQ 0.23 0.14 0.21

Table 5. Results for a partial context match. The speaker is the same as that
for the CD codebook, but the acoustic conditions are different.

book is poorer than that of the CD codebook. This re-emphasizes
the observation that among the two aspects of context considered
here, speaker dependency plays a more dominant role in codebook-
based speech enhancement. Once again we observe the adaptability
of the proposed Bayesian approach which leans towards the better
performance of the CD codebook.

4.2.5. Summary of test results

The four scenarios considered here demonstrate the effect of context
on the performance of the codebook-based speech enhancement al-
gorithm. Depending on the particular scenario, either the CD or the
CI codebook performs better, with a significant difference between
the two, highlighting the need for a robust method that performs well
in all scenarios. The proposed Bayesian approach provides this de-
sired robustness, and its performance in all four scenarios was seen
to be close to that of the best performing codebook. While the results
reported here are for an input SNR of 5 dB, these trends were also
observed at other input SNRs.

5. CONCLUSIONS

The concept of context-dependent (CD) codebooks for codebook-
based speech enhancement was introduced. Two aspects of context
dependency were considered for investigating the benefits of the CD
codebooks over context-independent (CI) codebooks: dependency
on the speaker characteristics, and on the acoustic condition during
usage. A Bayesian scheme was proposed for providing a framework
to optimally combine the estimates from the CD and CI codebooks.
The scheme exploits the benefits of context dependency, and is also
robust to a mismatch between the context on which the CD codebook
is trained and the context that is encountered during testing. Experi-
mental results under different test scenarios confirm the benefits and
robustness of the proposed approach.
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