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ABSTRACT

How to utilize the time correlation of speech/nonspeech presence
is a crucial problem faced by noise estimators. The popular tech-
nique of exploiting such correlation is to smooth noisy spectra by
using a temporal recursive filter with a time-varying smoothing fac-
tor. But this technique cannot warrant the statistical optimality. In
theory, hidden Markov model (HMM) is more desirable than this
technique. It can give an elaborate description of speech/nonspeech
transition. Moreover, some theoretical frameworks, such as max-
imum likelihood (ML), are available for optimal estimation. This
paper presents a constrained sequential HMM to model the time cor-
relation of speech/nonspeech presence of an individual log-power
sequence. Its parameter set is on-line adapted to varying signals
based on a ML framework. We compared its performance with that
of well-established algorithms by speech enhancement experiments.
The results confirmed its promising performance.

Index Terms— Noise estimation, time correlation, sequential
hidden Markov model, constraints.

1. INTRODUCTION

Time correlation of speech/nonspeech presence is a widely used clue
for noise estimation. The most popular technique of exploiting the
time correlation is to use a temporal recursive averaging filter, where
the forgetting factor is controlled by speech presence probability
(SPP) [1] - [4]. But this techniques is not so perfect because it cannot
warrant the optimality of noise estimate. In addition, its estimation
process cannot be unified into a theoretical framework, and thus it
seems to be heuristic somewhat.

In theory, the hidden Markov model (HMM) is more desirable to
model the time correlation than the popular technique. On one hand,
some theoretical frameworks, such as maximum likelihood (ML) re-
estimation, are available to estimate its parameter set in a statistically
optimal sense. On the other hand, it can give an elaborate description
of speech/nonspeech transition by using transition probabilities. The
binary-state HMM consisting of a speech and nonspeech state has
been proposed to model the correlation of speech/nonspeech pres-
ence [5], [6]. However, the transition probability of those algorithms
is fixed and does not adapt to varying signals, which is problematic
since the time correlation varies with times and differs from band to
band. Hence this HMM-based method should be further perfected.

In this paper, we propose a constrained sequential HMM
(CSHMM) to model the time correlation of a log-power sequence.
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A sequential scheme is derived from a ML framework of HMM,
where the HMM parameter set including the noise estimate is se-
quentially regulated at varying signals based upon the ML criterion.
Another advantage of this algorithm over conventional algorithms
concerns with its initialization methods. Conventional noise estima-
tors usually initialize their models based on an assumption that the
first several frames of an utterance to be nonspeech. If an utterance
begins with speech, the noise model of conventional ones will be in-
correctly initialized. Fortunately, the CSHMM initialization process
is conducted by expectation-maximization (EM), and thus does not
require this assumption. This advantage is very valuable to practical
applications. The proposed algorithm is conducted at each band in
parallel, and the detail in a single band is given in the following.

2. MODELING A LOG-POWER SEQUENCE USING HMM

We firstly consider a high-SNR band in which both speech and
nonspeech signals are supposed to be present. In addition, the
speech/nonspeech logarithmic power is assumed to satisfy the Gaus-
sian distribution. The transition dynamics of the power sequence
between speech and nonspeech states is modeled by using a Markov
chain, each state of which consists of a unique Gaussian compo-
nent. For the interests of brevity, the bin index & is omitted since
an individual band is concerned in this algorithm. Let )\, denote
the parameter set of HMM estimated from a log-power sequence,
x¢ 2 {z1,20,...,20}. Letsg £ {s1,52,...,50}, 50 € {0,1} be
a state sequence corresponding to x,, where 1 denotes the speech
state and O for the nonspeech state. The HMM probability density
function (PDF) is given by

ZP(SZW p(xelse, Ae), (1
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where p(s¢|A¢) is the probability of the state sequence s,
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where as, s, denotes the transition probability from state s;_1 at
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time ¢t — 1 to state s; at time ¢, and ao, s, £ ms, denotes the prob-
ability of the initial state s1. p(xe|s¢, A¢) is the PDF of given the
sequence of states sy, described as
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where b(z¢|s¢, A¢) is the PDF of the observed data x+ given the state
s¢ and the parameter set A, denoted as
b — i) = ! : 4

($t|8t =1, é) = \/TTMGXP{ - i(xt - Mz,é) /Hz,é}7 )
where p; ¢ and K; are respectively the mean and variance of the
Gaussian function for the given state s; = 4.

How to estimate the parameter set Ay = {, a¢, pt,, K¢} is the
key problem, where pt, = {po,¢, 1,6}, ke = {Ko.e,k1,}, and a,
is a 2 x 2 transition matrix. @ £ {70, 71} denotes the initial prob-
ability respectively in nonspeech and speech states. Given a training
sequence X¢ from the observed noisy speech spectra, a maximum-
likelihood estimate of the parameter set )¢ is obtained from

A = arg max In Z p(xe,80|N). (5)

Se

where 10,¢ s the optimal estimate of the noise power.

3. SEQUENTIAL ESTIMATION OF HMM PARAMETERS

The classical method of estimating HMM parameters is the expectation-

maximization (EM) algorithm. It is a batch algorithm that requires
processing the received data as a whole. However, the speech and
nonspeech signals are assumed to be piecewise stationary. Their
statistical characteristics vary with time; hence a sequential scheme
can be adaptive in nature to track the varying parameters. The typi-
cal sequential schemes for HMM will induce a heavy computational
load since the whole Markov chain is updated in each time. For this
reason, we present a simplified scheme, where the current model
depends on the last model and the current observation. It is actually
a first-order recursive process described as A\py1 = <I>(:rg+1, /\4).
The initial Markov chain is constructed from the first M samples by
the EM algorithm in an off-line manner, and then sequentially up-
dated frame by frame. After initialization, the parameter 7 does not
vary with time going. In the following, we give only the sequential
scheme and the EM-based initialization can refer to textbook.

The criterion of the sequential estimate is based on the principle
of maximum likelihood,

Aey1 = max Qeg1a, (N, (6)
where the likelihood function is defined as

Qes1)x,(A) = E{log p(xe41,8e41|A) ’X€+17 Ae}

41 (7
= Z Piin, (N) + Z Yol (4) log i,
t=1 i

with

Pua,(N) =D &ua, (i,5) log ai;
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Here, 7;, aij, pui, ki are the unknown parameters in A, &x, (4, J) =
p(st—1 = i, 8¢ = j|zt, A¢) is the conditional transition probability,
and v, x, (1) = p(st = i]xt, A¢) is the speech/nonspeech presence
probability. Because of the limited space, the sequential scheme is
directly given, and please refer to [7] for its derivation in details.

+ Z ’Yﬂ)\g (Z) log

The recursive processes for mean and variance are represented
respectively as

pier1 = Qo (Dpie + [1 — Gor(3) ] zeqa, ©)

Kit1 = Qey1(1)Rie + [1 - d2+l(i)] (o411 — Mu)Q, (10)
where ao41(4) is a time-varying and frequency-dependent smooth-
ing factor, represented as

Got1(1) = e (i) [ Vet (3), an

with
Yer1 (1) = e (i) + (1 — a)yeqain, (4), (12)
where « is a constant forgetting factor.

The transition probability is described as a non-linear recursive
equation,

Qije+1 = Qg0+
‘£@+1Me(i’j) £g+1\>\f('i71*j)
aije 1—a;j;

&1 (i,5) + ﬁ&ﬂ(i; 1—j)
5,4 17,

13)

where K = |a/(1 — o) ] makes the transition probability be for-
gotten with the same speed as that of the means and variances.
&o+1(3, j) is the smoothed transition probability, described as

Eo1(i, ) = ae(i, ) + (1 — @)&eqrya, (4, 4)- (14)

In the sequential process of Eqs. 9 - 14, A\yy1 is determined by four
variables, namely ¢4 1, Ae, §o41)x, (4, 5), and ye11)x, (). If the con-
ditional probabilities yy41|, (4) and &,41|x, (4, j) can be represented
as a function of z¢41 and A, the sequential scheme will be a first-
order recursive process.

These conditional probabilities are usually calculated by using
the forward and backward factors. Therefore, this algorithm makes
an approximation to those factors in order to construct a first-order
sequential scheme. Assuming the model A\, varies with time slowly,
the forward factor is defined as a sequential variable,

Friqn, () = Z Fya, 1 (Gagieb(zer1]sers =i, Ae).  (15)

J

As the future information is unavailable in the on-line estimation,
the backward factor By, (i) is set to be 1. Hence, the following
conditional probabilities are obtained,

N F£+1‘)\g (7‘)
Ve, (1) = S Forn, (6) e

- Fopapn, (1) @ig eb(xepa]sers = j, Ae
g@rllk@(lv]) _ +1|Ap ) .J ( | A ) ) (17)
> ij Feran (Daijeb(zesa|serr = j, Ae)
From Eqs. 15-17, one can see Ygy1x,(¢) and 4112, (4, 5) are
the functions of x,41 and A,. Eventually, the sequential scheme is
efficiently realized based on a first-order time-recursive process.

4. CONSTRAINTS TO THE HMM

The binary-state HMM introduced in section 3 has the advantage of
well treating the binary-mode data set consisting of speech and non-
speech samples. Due to sparsity of speech distribution in frequency
domain, however, speech signal may be absent or very weak in some
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Fig. 1. Schematic illustration of the log-power distribution.

low-SNR bands, where the data set consists of only nonspeech sam-
ples, and thus the speech state is difficult to be modeled. For this
reason, some constraints to HMM are utilized to adapt the binary-
state model to the nonspeech-only-mode data set.

These constraints are mainly induced from the relationships be-
tween speech and nonspeech distributions. Fig. 1 schematically il-
lustrates the binary-mode histogram of logarithmic power at a noisy
band. Since “nonspeech” denotes noise while “speech” represents
the superposition of noise and clean speech signals in this paper, the
nonspeech mean is smaller than the speech mean. So, one mode
with smaller mean is identified as nonspeech mode, and the other as
speech mode. The mean difference 41,0 — f10,¢ represents the poste-
rior SNR of this band. Assuming the noise signal is more stationary
than the speech signal, the nonspeech variance is smaller than the
speech variance.

These distribution relationships are reflected in the binary-state
HMM by some constraints. First, the relationship between speech
and nonspeech means is described by the constraint,

p1,e = max{pi,e, fto,e + 0}, (18)

where § > 0. Second, according to the variance relationship, the
following constraint is introduced.

K10 = max{Ko,¢, K1,0}- (19)

The process that the constraints adapt the binary-state model to
the nonspeech-only-mode data set is demonstrated by EM iterations.
When speech signal is absent or very weak, the actual posterior SNR
is less than § and the speech mean will be set as po,n + 0 by the
constraint of Eq.18. As a result, the speech likelihood of most sam-
ples b(x¢|se = 1,An) is decreased, and vice versa for the non-
speech likelihood, and then the nonspeech presence probability of
most samples will increase. Accordingly, this adaptation attempts
to identify more samples as nonspeech. After several iterations, the
nonspeech presence probability of all samples will approach to 1.
Therefore, the nonspeech mean and variance is calculated by using
all samples while the speech mean and variance are respectively set
as i1, = po,m + 6 and K1, p = Ko, m by the constraints.

Here, § is an important parameter determining the first constraint
to be activated or not. In general conditions, the bands with the pos-
terior SNR less than § are approximated to be speech-absent, where
the weak speech components are taken as nonspeech, which is re-
ferred to as speech leakage. If ¢ is too large, some strong nonspeech
components are likely to be taken as speech, which is named as non-
speech leakage. Therefore, J regulates the tradeoff between speech
and nonspeech leakage.

The third constraint is introduced due to the first constraint.
When the first constraint is activated in initialization, the SPP of
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all samples will be close to zero. The denominators of iteration
equations in EM algorithms will be zero when the speech mean and
variance are re-estimated, which results in the EM algorithm failure.
Therefore, we introduce the third constraint,

M

1

i Zp(.w = 1)ze, ) > €, (20
=1

where € is close and greater than zero. When the condition in Eq.20
is not satisfied, the EM iteration will terminate.

The last constraint concerns the state transition in the sequential
process at low-SNR bands. If the inter-state transition probability
a;j (1 # j) is very small, one state is difficult to transit to the other,
which results in over-smoothing. Particularly when speech samples
are unavailable for initialization at speech-absent bands, the inter-
state transition probability will be zero. Accordingly, the inter-state
transition is impossible to occur even if strong speech signal comes
in the following sequential process. Hence the transition probabili-
ties must be regulated in a certain range,

ao,1,0 = max(ao,1,6,{) aoo0e=1—ao1.

a1,0,e = max(ai,oe, () aiie=1—aioe. @b
The CSHMM estimator can run in low-SNR bands by utilizing
these constraints. Even when speech signal is absent, these con-
straints fabricate a virtual speech state to guarantee the binary-state
model works well. This virtual one can convert into a real one when
the CSHMM is updated with speech samples. In addition, these con-
straints are unlikely to being activated in high-SNR bands, and they
hardly affect the HMM parameters.

S. IMPLEMENTATION AND EVALUATIONS

The above section shows noise estimation in one frequency band.
The noise power of each band is estimated in parallel. The con-
straints are applied after each parameter is updated. For example,
the constraint of Eq.18 follows Eq.9, Eq.19 to Eq.10, and Eq.21
to Eq.13. Before estimation, the noisy logarithmic spectrum is
smoothed with a three-point median filter in order to take into
account the strong correlation of speech presence in neighboring
frequency bins. The parameters for signal with sampling rate 16
KHz are set as o = 0.98, 0 = 0.55, ¢ = 0.03, ¢ = 0.05, M = 30.

The noise and speech signals in our evaluation are respectively
taken from the NOISEX-92 database and TIMIT database. They
include white Gaussian, F16 cockpit, and babble noises. In addition,
the non-stationary white Gaussian noise (NONWGN) is simulated
by increasing the level of the stationary white at a rate of 3 dB/s
for a period of three seconds, and sometime afterwards decreasing
it back to the original level at the same rate. All noise signals are
artificially added to clean speech signals at SNR of 0, 5, 10 dB.
Each clean speech signal mixed with the NONWGN is constructed
from every four short utterances while the speech signals for other
noises are constructed from every two short utterances. There are
ten long clean utterances and totally thirty noisy utterances for each
noise. The sampling rate of all signals is 16 kHz.

Two well-established noise estimators, namely MS [8] and IM-
CRA [2], are utilized as the competing ones. The IMCRA is a typ-
ical time-recursive noise estimator. The crucial distinction between
IMCRA and CSHMM is the method of employing the time correla-
tion. The CSHMM incorporate the state transition into the recursive
process while IMCRA does not.



Table 1. Segmental SNR of enhanced speech under various conditions (dB).

SNR White noise NONWGN F16 cockpit noise Babble noise
MS IMCRA CSHMM MS IMCRA CSHMM MS IMCRA CSHMM MS IMCRA CSHMM
0dB 3.95 423 4.97 4.04 423 4.93 3.66 3.45 4.11 4.10 4.30 4.41
5dB 6.61 6.74 7.52 6.60 6.68 7.49 6.38 6.05 6.85 6.97 7.06 7.36
10dB || 9.68 9.66 10.50 9.63 9.59 10.46 9.62 9.33 10.12 10.22 10.27 10.54
Table 2. PESQ score of enhanced speech under various conditions (dB).
SNR White noise NONWGN F16 cockpit noise Babble noise
MS IMCRA CSHMM MS IMCRA CSHMM MS IMCRA CSHMM MS IMCRA CSHMM
0dB 1.96 2.00 2.11 1.96 2.02 2.14 1.85 1.81 1.95 1.79 1.77 1.80
5dB 2.31 2.32 243 2.35 2.37 2.48 2.20 2.15 2.26 2.15 2.15 2.18
10dB || 2.61 2.63 2.73 2.67 2.68 2.78 2.54 2.50 2.60 2.50 2.49 2.53

Two objective evaluations based on speech enhancement are
used to evaluate the noise estimators. A decision-directed Wiener
filter for speech enhancement [9] is combined with these noise esti-
mators. They are utilized to track the priori and posteriori SNR of
the Wiener filter. Then, the noise estimators are indirectly assessed
via objective evaluation of the enhanced speech quality. One evalu-
ation is segmental SNR (SegSNR), but not the improved SegSNR.
The other is perceptual evaluation of speech quality (PESQ), which
is a mean opinion score (MOS)-like objective evaluation that facil-
itates the objective evaluation of audio signal quality based upon
perceptual criteria. Tables 1 and 2 respectively show the objective
evaluations of the enhanced speech quality under various condi-
tions. Incorporating SegSNR and PESQ for all conditions, it is
readily seen that the CSHMM estimator consistently achieves the
best results under all conditions.

6. CONCLUSION

In this paper, we propose a binary-state CSHMM to model the log-
power sequence. CSHMM is actually a temporal recursive filter
derived from the ML framework of HMM. It has three distinctions
from the popular time-recursive technique [1] - [4]. Firstly, CSHMM
incorporates the state transition between speech and nonspeech into
the time-recursive process while the popular techniques do not. Sec-
ondly, the noise logarithmic power is estimated in the ML sense
while the popular ones can not warrant the estimation optimality.
Lastly, the initialization condition of CSHMM is relaxed since it
does not require the first several frames of an utterance to be non-
speech. Even if speech signal is absent, the proposed model can be
correctly initialized by using the constraints. It is therefore more
practical than the popular techniques. This advantage is confirmed
by our preliminary experiments. The proposed estimator is an exten-
sion of the unsupervised learning framework in [10]. Since the time
correlation is fully considered within HMM, the proposed model is
more desirable than that in [10].
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