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ABSTRACT

Unvoiced-voiced portions of cochannel speech contain considerable
amounts of both voiced and unvoiced speech and play a significant
role in separation. Motivated by recent developments in separation
of speech from nonspeech noise, we propose a classification-based
approach for unvoiced-voiced speech separation. A new feature set
consisting of pitch-based features and gammatone frequency cep-
stral coefficients is proposed to represent the characteristics of a
time-frequency unit. The cepstral features do not rely on pitch and
are thus more robust than the pitch-based features to pitch estimation
errors. Speaker-independent support vector machines are trained for
classification. Results based on the TIMIT corpus show that the pro-
posed algorithm significantly improves unvoiced speech segregation
compared to a recent algorithm.

Index Terms— Cochannel speech separation, unvoiced speech,
voiced speech, unit-level features, classification

1. INTRODUCTION

Cochannel speech refers to a mixture of speech signals from two
speakers. In cochannel conditions, two talkers are usually not aware
of each other and their speech often has a large amount of overlap.
Since speech contains both voiced and unvoiced parts, a cochan-
nel speech signal has three different portions, i.e., voiced-voiced,
unvoiced-voiced (UV), and unvoiced-unvoiced portions. Unvoiced
speech constitutes about 20 to 25% of spoken speech in terms of time
durations [1]. Thus, in cochannel conditions, the UV portions cover
about 37.5% of all frames. For each speaker, significant amounts
of both voiced and unvoiced speech (about 75% of unvoiced frames
and 25% of voiced frames) are included in the UV portions.

Model-based methods perform separation by capitalizing on
speaker information. They often estimate sources jointly based on
models such as hidden Markov models (HMM), Gaussian mixture
models or nonnegative matrix factorization (e.g., [2], [3], and [4]).
Model-based methods deal with a whole speech signal including the
UV portions, but they often require availability of pretrained speaker
models and sometimes speaker identities.

We aim to separate unvoiced speech from voiced speech in a
speaker-independent way. In computational auditory scene analysis
(CASA), feature-based methods have been proposed to separate un-
voiced speech. Onsets and offsets are utilized to segment speech [1].
However, they do not differentiate unvoiced and voiced speech. In
[5], spectral subtraction is incorporated in CASA to segregate un-
voiced speech. The stationarity assumption of noise is relaxed in [5]

compared to traditional speech enhancement methods but is still hard
to meet in a cochannel scenario. A tandem algorithm in [6] utilizes
6-dimensional pitch-based features (6F) to group voiced speech. The
pitch provides a cue to differentiate voiced and unvoiced speech but
the separation performance is closely related to pitch estimation ac-
curacy.

From a different perspective, speech separation can be formu-
lated as classification by estimating the ideal binary mask (IBM) [7].
In the IBM, 1 indicates a target dominant time-frequency (T-F) unit
and 0 an interference dominant one. One of the first classification-
based methods appears in binaural speech separation. In monaural
conditions, supervised learning based on the 6F features [8] or am-
plitude modulation spectrum (AMS) features [9] has also proven to
be effective. Recently, a system in [10] combines the 6F features and
AMS features and utilizes support vector machines (SVM) for clas-
sification. This system improves the segregation performance and
also demonstrates good generalization ability to unseen noise.

Inspired by the aforementioned approaches, we propose a classi-
fication based method to separate unvoiced-voiced speech in cochan-
nel conditions. Our work differs from those in [9] and [10], which
only deal with separation of speech and nonspeech noise. In this
work, we explore different features such as the pitch-based features,
gammatone frequency cepstral coefficients (GFCC) [11] and the
AMS features for classification of T-F units. Results show that
GFCCs are competitive features, and we combine them with the
pitch-based features and construct a new feature set for classifica-
tion. Since extraction of GFCCs does not depend on pitch, it can
also deal with frames where pitch estimates contain errors. We
employ SVMs for classification, aiming to generalize well across
different speakers. Results show that the proposed method improves
the separation performance considerably compared to a previous
CASA-based algorithm.

The paper is organized as follows. The proposed method is de-
scribed in the following section. Evaluation and comparisons are
given in Section 3, and we conclude the paper in Section 4.

2. SEPARATION OF UNVOICED SPEECH FROM VOICED
SPEECH

2.1. Peripheral Processing

Cochannel speech is first decomposed by a 128-channel gamma-
tone filterbank with center frequencies spread uniformly in the ERB
(equivalent rectangular bandwidth) scale from 50 Hz to 8000 Hz
[12]. The output of each filter is then divided into 20-ms time frames

4545978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



with 10 ms overlap between neighboring frames. The resultant T-
F representation is called a cochleagram [12]. In this representa-
tion, each T-F unit contains a filtered signal within a specific time
frame and frequency band. To determine the UV intervals, we use
an HMM-based pitch tracker [13] to estimate pitch. The UV inter-
vals correspond to the frames with only one pitch estimate.

2.2. Feature Extraction

Since voiced speech is periodic (or quasi-periodic) and unvoiced
speech is aperiodic, an important cue to differentiate voiced and un-
voiced speech is pitch. Denoting a T-F unit at channel c and frame
m as uc,m, we extract the pitch-based 6F features following [6]

xc,m =

⎛
⎜⎜⎜⎜⎜⎜⎝

A(c,m, τm)

int(f(c,m) · τm)

|f(c,m) · τm − int(f(c,m) · τm)|
AE(c,m, τm)

int(fE(c,m) · τm)

|fE(c,m) · τm − int(fE(c,m) · τm)|

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

where A(c,m, τm) is an autocorrelation function [12] for uc,m at
the time lag of τm, which is the estimated pitch period at frame m.
A(c,m, τm) measures the similarity between the detected period of
the filtered signal in uc,m and τm. f(c,m) is the estimated average
instantaneous frequency of the filtered signal within uc,m [6]. The
function int(x) rounds x to the nearest integer. The product f(c,m)·
τm thus provides another feature to measure the periodicity of uc,m.
It will be close to an integer greater or equal to 1 if the response in
uc,m has a period of τm. The third feature measures the deviation
of uc,m from its nearest harmonic. The last three features (indicated
by the subscript E) are extracted similar to the first three but from
response envelopes [6].

xc,m is extracted based on a single T-F unit. To capture tempo-
ral and spectral dynamics, we also calculate its delta features. For
temporal dynamics, we calculate ΔxT

c,m by taking the element-wise

difference between xc,m and xc,m−1 when m ≥ 2, and set ΔxT
c,1 to

be ΔxT
c,2. The spectral deltas ΔxS

c,m are calculated in a similar way
across frequency channels. The complete set of pitch-based features
are thus

x′
c,m =

⎛
⎝xc,m

xT
c,m

xS
c,m

⎞
⎠

.

(2)

The dimensionality of x′
c,m is 6 × 3 = 18. Feature extraction

in (1) requires pitch. For training, we use Praat [14] to detect pitch
from premixed clean utterances. In testing, pitch is estimated by an
HMM-based pitch tracker [13] from the cochannel speech.

To further capture speech characteristics, we extract GFCC fea-
tures for uc,m. Note that the GFCCs here are extracted for each T-F
unit instead of each frame as done in [11]. Specifically, for each
channel, the filtered signal is filtered again by a 64-channel gam-
matone filterbank constructed as described in Section 2.1 for the
128-channel filterbank. The 64-channel outputs are then full-wave
rectified, downsampled to 100 Hz along the time dimension, and
compressed by a cubic root operation. Thus, for each T-F unit, we
have a 64-dimensional spectral vector called a gammatone feature
(GF) [11]. The GF is then converted to a GFCC by a discrete cosine
transform [11]. As in [11], we take the first 31 cepstral coefficients
and denote the GFCC for uc,m as yc,m.

To capture the temporal dynamics of yc,m, we use a delta-filter
as constructed by [15]. The filter centers on the current T-F unit and
spans across 9 frames. The output temporal delta feature is denoted
as yT

c,m. Due to the high dimensionality of the GFCC features, we
choose not to use the spectral delta features. Thus, the complete
feature set of GFCC features are

y′
c,m =

(
yc,m

yT
c,m

)
(3)

The dimension of the GFCC with temporal delta features (GFCC D)
is thus 31× 2 = 62.

Combined with the pitch-based features, we thus have an 80-
dimensional feature vector

zc,m =

(
x′
c,m

y′
c,m

)
(4)

for each T-F unit. Besides the pitch-based features and GFCC fea-
tures, we have also considered the AMS features and their temporal
and spectral deltas (AMS DD) used in [10]. As shown in Section 3,
the AMS DD does not perform as well as the GFCC D as a single
feature type in classification. Further, we have tested the perfor-
mance of adding the AMS DD features to the current feature set but
did not significantly improve performance. Considering the already
high dimensionality of zc,m, we do not use the AMS DD features
for classification.

2.3. SVM-based Classification

We choose SVMs to train a speaker-independent classifier for sep-
aration. The SVMs maximize the distance between the samples of
two classes near the separating hyperplane and are expected to gen-
eralize well [16].

We use the SVM for a linearly nonseparable scenario to perform
separation [16]. In this case, the SVM is trained by minimizing the
following cost function

f(w, ξ) = ||w||2/2 + C
∑
i

ξi (5)

with the constraints

yi(w
′Φ(zi) + b) ≥ 1− ξi, ξi ≥ 0. (6)

In (5), w represents the weight vector of the separating hyperplane
and ξi is a nonnegative slack variable corresponding to the classifica-
tion error. C controls the tradeoff between the margin of two classes
and the separation errors. In (6), Φ is a mapping function projecting
the training features to a higher-dimensional space, yi is the label
for zi, and b is the bias. We use ′ to denote transpose. We use the
LIBSVM package [17] for SVM training and testing.

We train an SVM for each channel. Since our task is to separate
unvoiced speech from voiced speech, T-F units in the UV intervals
that are dominated by the unvoiced speaker (no pitch) have the de-
sired labels of 1 and those dominated by the other speaker (pitched)
have the desired labels of 0. In feature mapping, we choose the ra-
dial basis function K(zi, zj) = exp(−γ||zi − zj ||2) as the kernel.
Training parameters, C and γ, are determined by cross-validation
for each channel. A 5-fold cross-validation is chosen to maintain a
balance between performance and computational complexity.

In classification, the outputs of an SVM are typically binarized
by taking the signs. However, in our case, the two classes of train-
ing samples are unbalanced. For example, voiced speech is concen-
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Fig. 1. Classification accuracies as a function of channel center fre-

quency using different types of features. For each cochannel speech

signal, we calculate the percent of correctly labeled T-F units for

each channel. The average accuracy over all testing signals is shown

above.

trated in low frequencies and thus there are more voiced-dominant
T-F units. Similarly, more unvoiced-dominant T-F units can be found
at high frequencies. As indicated in [10], this may cause the SVM
hyperplane to skew to the minority class. To compensate for this
imbalance, we use a development set to search for a threshold to
binarize SVM outputs to maximize the classification accuracy for
each channel. The new thresholds are used for binarization of SVM
outputs in testing.

By combining all unvoiced-dominant T-F units in UV intervals
we obtain a mask corresponding to the segregated unvoiced speech.

3. EVALUATION AND COMPARISON

To cover different speaker characteristics, we randomly choose 50
target speakers and another 50 interfering speakers from the TIMIT
corpus [18] for training. To create cochannel speech signals, the 50
target speakers are randomly matched to the 50 interferer speakers
to create 50 speaker pairs. For each pair, 10 utterances of the target
are randomly matched to the 10 utterances of the interferer to create
10 0-dB cochannel speech signals. In mixing, the interfering sig-
nal is either extended or truncated to match the length of the target.
In total, we have 500 mixtures for training. For this set, 25 mix-
tures are used for development and the others for SVM training. For
testing, we randomly choose another 12 speakers and generate 60
0-dB cochannel speech mixtures similarly. Note that speakers used
in testing are different from those in training.

We evaluate the segregation performance of our system based on
the SNR gain of the segregated unvoiced speech. The SNR gain is
calculated as the output SNR subtracted by the input SNR in the UV
intervals. In computing the output SNR, we take the resynthesized
speech from the UV portions of the IBM as the ground truth and
measure the output SNR as

SNR = 10 log10(
∑
n

S2
I [n]/

∑
n

(SI [n]− SE [n])
2), (7)

where SI [n] and SE [n] are the unvoiced speech signals resynthe-
sized from the ideal and an estimated unvoiced IBM, respectively. In
estimation, the UV intervals are determined by estimated pitch. For
the IBM, ideal pitch contours extracted from premixed utterances by
Praat [14] are used. Here, the IBMs are created using an LC (local
SNR criterion [12]) of 0 dB. In addition to the SNR measure, we
also evaluate using the classification accuracy, which is computed as
the percent of T-F units correctly labeled in UV intervals.

We first compare the T-F unit classification accuracies using dif-
ferent features as a function of frequency. As shown in Fig. 1, each
curve represents the classification performance based on one type
of feature. Comparing all single feature types, we observe that the
6F pitch-based features perform comparably with GFCC D features.
The accuracies obtained by either feature are above 90% in low fre-
quencies and about 80% on average in high frequencies. Across all
frequency channels, the accuracy is about 88.5% on average. The
AMS DD feature performs a little worse. In low frequencies, it
achieves a comparable performance to the 6F and GFCC D features
but performs significantly worse in high frequencies. The average
accuracy is about 87.2%, being 1.3% lower than the other single fea-
ture types. On the other hand, the proposed feature set performs
significantly better than any single feature type, with an average ac-
curacy of 90.1%. The improvement is about 1.6% over the best sin-
gle feature type, and the gap is as large as 5% in high frequencies
where unvoiced speech is concentrated. The better performance of
the proposed feature may imply that the 6F and GFCC D features are
complementary. We have also tried to combine the 6F and AMS DD
features but the performance is worse than the proposed feature set.
Note that here pitches are detected by the HMM-based algorithm
[13]. We have also evaluated the results using ideal pitch contours
detected from clean source utterances by Praat. In the ideal case, the
6F features perform as the best single feature type with an accuracy
of 89.8%, while the accuracy of the proposed feature also increases
to 92.5%.

We compare the unvoiced speech separation of our system to the
tandem algorithm [6], which relies on the 6F pitch-based features
for separation. For the tandem algorithm, it also includes an iterative
stage to further improve segregation using neighborhood T-F infor-
mation and pitch continuity. We first compare the two algorithms
based on the pitch contours detected by the tandem algorithm. As
shown in the Tandem row in Table 1, the proposed method outper-
forms the tandem algorithm by 2.4 dB in terms of SNR gain and
3.9% in classification accuracy. To improve the tandem algorithm,
we use the HMM-based pitch tracker [13] for pitch detection and
apply the detected pitch to initialize the tandem algorithm. By ini-
tialization we mean the initial pitch estimates in the tandem algo-
rithm are replaced by the outputs of the HMM-based pitch tracker.
As shown in the HMM+Tandem row in Table 1, the performances
of both algorithms improve. The proposed algorithm still performs
better by 2.8 dB in SNR gain and and 3.9% in accuracy. It is worth
mentioning that the tandem algorithm we compare to here is the ver-
sion with improved pitch estimates. The best results for the proposed
algorithm are obtained by directly using the pitch estimates from the
HMM-based pitch tracker. The results are shown in the HMM Pitch
row in Table 1. In this case, we achieve an SNR gain of 16.9 dB in
UV intervals and the classification accuracy is 86.5%. Compared to
the original tandem algorithm, the improvement is 4.1 dB in SNR
gain and 5.6% in accuracy.

We further evaluate the system using a hit minus false alarm
(HIT-FA) rate since it is shown that the HIT-FA rate is a good indi-
cator of human speech intelligibility [9]. As in [9], we calculate the
hit (HIT) rate as the percent of correctly labeled unvoiced-dominant
T-F units and the false alarm (FA) rate as the percent of incorrectly
labeled ones. The comparison with the tandem algorithm is pre-
sented in Table 2. In all pitch types, we observe that the proposed
algorithm performs uniformly better than the tandem algorithm in
terms of HIT-FA rates. Specifically, the proposed algorithm obtains
HIT rates comparable to those of the tandem algorithm but achieves
significantly lower FA rates. This probably indicates that the use of
GFCC D features complements the pitch-based features when there
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Table 2. Comparisons in terms of HIT, FA and HIT-FA rates between the proposed method and the tandem algorithm

HIT (%) FA (%) HIT-FA (%)
Pitch type

Proposed Tandem Proposed Tandem Proposed Tandem

HMM Pitch 60.0 - 7.3 - 52.7 -

HMM + Tandem 62.0 63.2 8.0 12.8 54.0 50.4

Tandem 60.1 60.7 9.3 14.1 50.8 46.6

Table 1. Comparisons in terms of average SNR gains and accuracies

between the proposed method and the tandem algorithm

SNR gain (dB) Accuracy (%)
Pitch type

Proposed Tandem Proposed Tandem

HMM Pitch 16.9 - 86.5 -

HMM + Tandem 16.1 13.3 86.6 82.7

Tandem 15.2 12.8 84.8 80.9

are miss errors in two-pitch frames. For our algorithm, the best HIT-
FA rate is 54% when using the pitch from the HMM+Tandem case.
It is 7.4% better than that of the original tandem algorithm. By us-
ing the HMM-based pitch alone, the HIT-FA rate is 52.7% and is
6.1% better than the original tandem algorithm. We note that these
rates are generally lower than those in voiced portions since there
are less speech-dominant T-F units in the UV portions. Further im-
provements can be obtained by rethresholding on the HIT-FA rate.

4. CONCLUSION

Inspired by classification-based methods for speech/nonspeech sep-
aration, we proposed an SVM-based classifier to separate unvoiced-
voiced portions of cochannel speech. Different features are in-
vestigated for this task. We propose a new feature set combining
pitch-based features and GFCC-based features and use channel-wise
SVMs for classification. The proposed method is speaker indepen-
dent, and results based on the TIMIT corpus show that it improves
unvoiced speech segregation of a previous CASA-based algorithm.

5. ACKNOWLEDGMENT

This research was supported by an AFOSR grant (FA9550-08-1-
0155).

6. REFERENCES

[1] G. Hu and D. L. Wang, “Segregation of unvoiced speech from
nonspeech interference,” J. Acoust. Soc. Am., vol. 124, pp.
1306–1319, 2008.

[2] J. R. Hershey, S. J. Rennie, P. A. Olsen, and T. T. Kristjans-
son, “Super-human multi-talker speech recognition: a graphi-
cal model approach,” Comput. Speech Lang., vol. 24, pp. 45–
66, 2010.

[3] A. Reddy and B. Raj, “Soft mask methods for single-channel
speaker separation,” IEEE Trans. Audio, Speech, Lang. Pro-
cess., vol. 15, no. 6, pp. 1766–1776, 2007.

[4] P. Smaragdis, “Convolutive speech bases and their application
to supervised speech separation,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 15, no. 1, pp. 1–12, 2007.

[5] K. Hu and D. L. Wang, “Unvoiced speech segregation from
nonspeech interference via CASA and spectral subtraction,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 19, pp. 1600
– 1609, 2011.

[6] G. Hu and D. L. Wang, “A tandem algorithm for pitch esti-
mation and voiced speech segregation,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 18, pp. 2067–2079, 2010.

[7] D. L. Wang, “On ideal binary mask as the computational goal
of auditory scene analysis,” in Speech Separation by Humans
and Machines, P. Divenyi, Ed., pp. 181–197. Norwell, MA:
Kluwer Academic Press, 2005.

[8] Z. Jin and D. L. Wang, “A supervised learning approach to
monaural segregation of reverberant speech,” IEEE Trans. Au-
dio, Speech, Lang. Process., vol. 17, pp. 625–638, 2009.

[9] G. Kim, Y. Lu, Y. Hu, and P. C. Loizou, “An algorithm that
improves speech intelligibility in noise for normal-hearing lis-
teners,” J. Acoust. Soc. Am., vol. 126, no. 3, pp. 1486–1494,
2009.

[10] K. Han and D. L. Wang, “An SVM based classification ap-
proach to speech separation,” in ICASSP-11, 2011, pp. 4632–
4635.

[11] Y. Shao and D. L. Wang, “Sequential organization of speech
in computational auditory scene analysis,” Speech Comm., vol.
51, pp. 657–667, 2009.

[12] D. L. Wang and G. J. Brown, Eds., Computational Audi-
tory Scene Analysis: Principles, Algorithms and Applications,
Hoboken, NJ: Wiley-IEEE Press, 2006.

[13] Z. Jin and D. L. Wang, “HMM-based multipitch tracking for
noisy and reverberant speech,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 19, pp. 1091–1102, 2011.

[14] P. Boersma and D. Weenink, “Praat: doing pho-
netics by computer (version 5.0.02),” Online:
http://www.fon.hum.uva.nl/praat, 2007.

[15] D. P. W. Ellis, “PLP and RASTA (and
MFCC, and inversion) in Matlab,” Online:
http://www.ee.columbia.edu/ dpwe/resources/matlab/rastamat/,
2005.

[16] C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discovery, vol. 2, pp. 121–
167, 1998.

[17] C. C. Chang and C. J. Lin, “LIBSVM: A library for support
vector machines,” 2001.

[18] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S.
Pallett, and N. L. Dahlgren, “DARPA TIMIT acoustic phonetic
continuous speech corpus,” 1993.

4548


