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ABSTRACT

Monaural speech separation is a very challenging problem.

Recent studies utilize supervised learning methods to estimate

the ideal binary mask (IBM) to solve the problem. In a su-

pervised learning framework, the issue of generalization to

conditions different from those used in training is paramount.

This paper describes methods that require only a small train-

ing corpus but can generalize to unseen conditions. The sys-

tem utilizes support vector machines to learn classification

cues and then employs a rethresholding method to estimate

the IBM. A distribution fitting method is used to address un-

seen signal-to-noise ratio conditions and an iterative voice ac-

tivity detection is used to address unseen noise conditions.

Systematic evaluations show that the proposed approach pro-

duces high quality IBM estimates under unseen conditions.

Index Terms— Speech separation, Generalization, SVM,

Rethresholding

1. INTRODUCTION

For speech separation, the ideal binary mask (IBM) has been

suggested as a main goal for computational auditory scene

analysis (CASA) systems [1]. The IBM is defined in terms

of premixed target and interference. Specifically, with a time-

frequency (T-F) representation of a sound mixture, the IBM

is a binary matrix along time and frequency where a matrix

element is 1 if the signal-to-noise ratio (SNR) within the cor-

responding T-F unit is greater than a local SNR criterion (LC)

and is 0 otherwise. A series of studies shows that IBM sep-

aration produces large speech intelligibility improvements in

noise [2, 3, 4].

Recent studies have utilized supervised classification

based systems for IBM estimation [5, 6, 7]. Typical super-

vised learning requires that the distribution of the training set

match that of the test set. For speech separation, if the input
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SNRs or background noises contained in the test mixtures

are not seen in the training set, there is no guarantee that the

system will achieve good classification results. Previous sys-

tems have avoided this problem by either training and testing

on the same SNR and noise conditions, or training on a large

variety of SNRs or noises, which requires substantial compu-

tational resources. To minimize the need for such expensive

training and because one cannot expect to train on all possible

conditions that will be seen in testing, it is important to design

a system that is able to generalize to unseen conditions.

In this work, we are concerned with speech separation

from non-speech interference. We propose a system that aims

to estimate the IBM under unseen SNR or noise conditions.

Our system includes an SVM based supervised learning stage

following by a rethresholding step. We utilize SVMs to pro-

duce initial separation cues and then calculate new thresholds

to classify T-F units. The new thresholds are adaptively com-

puted based on the characteristics of a test mixture, which are

expected to generalize to unseen SNR or noise conditions.

The paper is organized as follows. In the next section,

we present an overview of the proposed system. Section 3

describes how to generalize to unseen SNR and noise condi-

tions. The systematic evaluation results are given in Section

4. The last section concludes the paper.

2. SYSTEM OVERVIEW

The system consists of several stages. A 16000 Hz input mix-

ture signal s(t) is analyzed by a 64-channel gammatone filter-

bank, with center frequencies distributed from 50 Hz to 8000

Hz. In each channel, the output is divided into 20-ms time

frames with 10-ms overlap between consecutive frames. This

processing produces a decomposition of the input signal into

a two-dimensional T-F representation, or cochleagram [8].

Given the filtered subband mixture, we extract two types

of features from each T-F unit: pitch-based features and rela-

tive spectral transform-perceptual linear prediction (RASTA-

PLP) features [9]. For pitch-based features, the autocorre-

lation function (ACF) A(c,m) for channel c and frame m
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is computed at the pitch lag [8]. Similarly, we compute the

envelope ACF, AE(c,m), which captures the amplitude mod-

ulation information in high frequency channels. In order to

encode variations, we also calculate delta features. Specif-

ically, the time delta feature ΔAT (c,m) is the difference

between A(c,m) and A(c,m − 1) and the frequency delta

feature ΔAC(c,m) is computed in the same way. To get

RASTA-PLP features, after the power spectrum is warped to

the Bark scale, we log-compress the resulting auditory spec-

trum, filter it by the RASTA filter, and expand it by an expo-

nential function. Subsequently, PLP analysis is performed on

this filtered spectrum. This results in a 13-dimensional fea-

ture vector. We also calculate delta features for RASTA-PLP

across frames and channels. Finally, both types of feature

vectors are combined into a 45-dimensional feature vector for

each T-F unit. This feature vector is used as the input to the

SVMs.

We use probabilistic SVMs to model the posterior proba-

bility that a T-F unit is assigned a 1 by the IBM given the fea-

ture vector, denoted P (y = 1|x). A separate SVM is trained

for each frequency channel. We use the radial basis function

kernel, K(xi,xj) = exp(−γ||xi − xj ||2), where parameters

are chosen by 5-fold cross-validation. A sigmoid function is

used to map a decision value to a number between 0 and 1,

which we then interpret as a posterior probabilitiy [10]. The

SVM library LIBSVM [11] is used in our experiments.

Generally speaking, the standard SVMs use θ = 0.5 as

the threshold to perform classification. However, in this study

we train using a small number of noise types and with a fixed

input SNR and wish to generalize to a large variety of unseen

conditions. In this case, we do not expect the trained SVMs to

produce good results directly. Motivated by [7], we incorpo-

rate a rethresholding stage to address the unmatched situation.

That is, we select the threshold θc that maximizes the classifi-

cation accuracy in channel c, and then use the new threshold

to binarize the SVM outputs, i.e., P (y|x):

y(x) =

{
1, if P (y = 1|x) > θc

0, otherwise
(1)

We discuss how to determine the new thresholds θc in the next

section.

3. GENERALIZATION TO UNSEEN CONDITIONS

3.1. Unseen SNR conditions

For the SNR generalization problem, we refer to the thresh-

old that maximizes the classification accuracy as the optimal

threshold. We observe that in unmatched SNR conditions, the

optimal threshold in each channel can substantially improve

the classification result relative to a threshold of 0.5. Further,

although optimal thresholds vary in different SNR conditions,

the SVM outputs have similar distributions, and the optimal

thresholds are located at similar positions of the distributions.

Fig. 1 shows histograms of the SVM outputs in the 10th chan-

nel. The system is trained on factory noise at 0 dB and SVM

outputs are generated for the same noise condition at -10, -5,

0, 5 and 10 dB SNRs. The figure shows that each histogram

has a peak Pk on the left side (P < 0.6) and SVM outputs be-

tween Pk and P = 0.6 for each histogram can be fitted by the

same distribution (but with different parameter value Ω). The

vertical line in each histogram indicates the optimal threshold

which always locates at the tail end of each distribution.
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Fig. 1. Histograms of the posterior probabilities in the 10th

channel with different input SNRs.

To determine the threshold in channel c, we first find the

peak Pk on the left side of the histogram and then fit a pre-

determined distribution function f(x; Ω) to the SVM outputs.

We limit the range of the distribution fit to [Pk, 0.6] and use a

half-Cauchy distribution in this study:

f(x;μ, σ) =

⎧⎪⎨
⎪⎩

2

πσ[1 + (x−μ
σ )2]

, if x ≥ μ

0, otherwise

(2)

where, μ, σ are parameters determined by maximal likelihood

estimation. Once the parameters of the distribution are fixed,

the new threshold θc is calculated using the inverse probabil-

ity density function θc = f−1(α; Ω), where α corresponds to

the tail end of the distribution and is empirically set to 0.9.

This method estimates IBMs under unseen SNR conditions

without the knowledge of the input SNR.

3.2. Unseen noise conditions

Another important issue is generalization to unseen noises.

We find that with even a small amount of the novel noise in-

trusion, one can construct a development set to choose thresh-

olds that perform well under the given noise condition. Mo-

tivated by this observation, we propose an approach that cou-

ples voice activity detection (VAD) with an iterative proce-

dure to perform rethresholding.
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Fig. 2. Diagram of the iterative VAD based rethresholding

system.

As shown in Fig. 2, given a test mixture, we use the

trained SVMs to output the posterior probability of speech

dominance for each T-F unit. In parallel we use Sohn et
al.’s VAD algorithm [12] to detect the noise frames. This

algorithm produces the likelihood of speech presence for

each frame. We select 20% of the frames with the lowest

likelihoods as the noise frames. In addition, to avoid poten-

tially spurious noise frames, we exclude those noise segments

whose lengths are less than 5 frames.

The detected noise frames are concatenated and then

mixed with a stored utterance to form a reference mixture for

which we can compute the corresponding IBM. The length

of the detected noise frames is often shorter than that of the

stored utterance, so we simply duplicate the noise frames

until their length is equal to that of the utterance. We treat the

reference mixture and its IBM as a development set to select

thresholds θ̂0c . With θ̂0c and the posterior probability of speech

dominance for each T-F unit of the test mixture, it is easy to

produce a rethresholding mask.

We further tune the rethresholding mask by means of the

VAD results. If a frame is a noise frame, it is unlikely that

a unit with strong energy in this frame is target-dominant.

Therefore, we first calculate the mean log energy Ē of all T-F

units in the mixture. For those units within the frames with

the lowest 10% speech presence likelihoods, a 1-labeled unit

is relabeled as 0, if the corresponding log energy is greater

than 0.8Ē, because the energy probably comes from noise.

After the VAD based tuning process, some false alarm units

are corrected and a tuning mask is formed.

The above process generates good estimated IBMs, and

we employ an iterative scheme to further improve the results.

We first utilize the tuning mask to produce better VAD re-

sults. If most energy of a frame comes from noise, the frame

is probably a noise frame. Thus, a frame is marked as a noise

frame if the mean of the log energy in the 0-labeled units in

this frame is more than 0.5Ē. These marked noise frames

together with the noise frames detected from the VAD algo-

rithm constitute a new noise frame set. With the new noise

frame set, we generate a new reference mixture to choose the

thresholds θ̂1c and apply the same rethresholding and tuning

stages as described above. In our experiments, two iterations

are good enough to generate estimated IBMs and more itera-

tions do not significantly contribute to the final results.

4. EVALUATION

4.1. Generalization results to unseen SNRs

We first evaluate the capacity of our system to generalize to

unseen SNRs. The IEEE corpus [13] is used to train and test

the system. For the training set, we choose 100 female ut-

terances mixed with 3 types of noise: speech-shaped noise,

factory noise and babble noise at 0 dB. The test set consists

of 10 utterances mixed with the same 3 types of noise at -10,

-5, 0, 5 and 10 dB. There is no overlap between the training

and the test utterances. Each utterance is mixed with a noise

segment selected randomly from the original noise recording.

The LC is set to -5 dB for all 64 channels to generate IBMs. In

order to quantify the performance of our system, we compute

the HIT rate (the percent of the target-dominant units in the

IBM correctly classified) and the FA rate (the percent of the

interference-dominant units in the IBM wrongly classified).

We give the difference between HIT and FA, HIT−FA, as it

has been shown to be highly correlated with human speech

intelligibility [6].

We compare the proposed system with the original SVM

classification approach that does not incorporate rethreshold-

ing. As shown in Fig. 3, the proposed system achieves high

HIT−FA rates and outperforms the original approach for all

input SNR conditions. On average, the rethresholding method

improves HIT−FA by 7% for five input SNRs.

In [7], we quantitatively compared our original approach

to Kim et al.’s system [6] which uses Gaussian mixture mod-

els for classification. Their system is trained under -5, 0 and

5 dB input SNRs. Although limited space does not permit a

detailed comparison here, we point out that the proposed sys-

tem achieves considerably higher HIT−FA rates than Kim et
al.’s.

4.2. Generalization results to unseen noises

To evaluate generalization to unseen noises, we choose 30 fe-

male utterances mixed with 5 types of noise out of a corpus

of 100 nonspeech noise types. We set the input SNR to 0 dB

to train the system. To test our system, we use 10 female ut-

terances mixed with the 10 types of noise—N1: speech-shape

noise, N2: factory noise, N3: fan noise, N4: bird chirp, N5:

white noise, N6: cocktail party noise, N7: rain noise, N8:

rock music, N9: wind noise, N10: clock alarm—at 0 dB. The
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Fig. 4. Noise generalization results for 10 unseen noises.
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Fig. 3. SNR generalization results for (a) speech-shaped noise, (b) factory noise and (c) babble noise.

test noises cover both stationary and nonstationary noises and

have very different frequency characteristics, none of which

is seen in the training set.

Fig. 4 shows the comparison with the original SVM clas-

sification approach. The proposed system achieves higher

HIT−FA rates under all unseen noise conditions. On average,

our system outperforms the original approach by 6%, which

demonstrates that with a small amount of training, our system

can generalize to a large variety of unseen noise conditions.

Compared with Kim et al.’s system, our system performs sub-

stantially better under unseen noise conditions.

5. CONCLUSION

This study aims to design a speech separation system that re-

quires minimal training but is able to generalize to unseen

conditions. The proposed system trains SVMs to model the

posterior probability of each T-F unit, and then uses rethresh-

olding to estimate the IBM. For unseen SNR conditions, we

use an empirical method that does not require knowledge of

the input SNR to determine thresholds. For unseen noise con-

ditions, we propose an iterative scheme that incorporates a

VAD algorithm to determine thresholds and estimate IBMs.

The experiments show that the proposed approach achieves

good generalization results for unseen conditions.
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