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ABSTRACT 

 
Phonetic segmentation is an important step in the 
development of a concatenative TTS voice. This paper 
introduces a segmentation process consisting of two phases. 
First, forced alignment is performed using an HMM-GMM 
model. The resulting segmentation is then locally refined 
using an SVM based boundary model. Both the models are 
derived from multi-speaker data using a speaker adaptive 
training procedure. Evaluation results are obtained on the 
TIMIT corpus and on a proprietary single-speaker TTS 
corpus. 
 

Index Terms— Phonetic segmentation, Phoneme 
alignment, Text to speech 
 

1. INTRODUCTION 
 
The development of a data-driven TTS voice is a complex 
process that starts with corpus design and recording of the 
target speaker. The recorded data then goes through a semi-
automatic annotation process, including phonetic 
transcription and segmentation, followed by training and 
tuning of the voice models.  

Generally, the annotation accuracy is an important 
factor in the synthesized speech quality. Therefore, voice 
development usually includes supervision and correction 
processes that require the effort of skilled personnel. 
Concatenative TTS systems are especially sensitive to 
phonetic transcription and segmentation errors. Such errors 
may result in an audible glitch or unintelligible speech each 
time an erroneous segment is selected.  

The aim of our work is to improve the accuracy of the 
automatic phonetic segmentation process in order to 
eventually reduce the scale or even eliminate the manual 
effort without affecting the final voice quality. The phonetic 
segmentation approach presented in this paper includes 
HMM-based forced alignment followed by SVM-based local 
boundary refinement. Though some previous works [1][2] 
used the same major processing blocks, our method contains 
certain novel elements including HMM topology tuning, 
HMM adaptation strategy and local refinement features and 
goal function. 

The rest of the paper is organized as follows. Section 2 
contains a detailed description of the proposed phonetic 
segmentation method. Objective evaluation results are 
presented in section 3 with the goal of comparing the 
accuracy achievable by the proposed automatic process to 
that achieved manually. Finally in section 4, conclusions are 
drawn from this work.  

 
2. METHOD 

 
The proposed method performs phonetic segmentation by 
means of HMM-GMM forced-alignment, followed by SVM-
based local refinement of phone boundaries. Both the HMM 
system and the SVM models are trained on a manually 
segmented and phonetically labeled corpora. 
 
2.1. HMM alignment 
 
The HMM alignment is carried out using the Attila speech 
recognition toolkit developed by IBM Research [3]. The 
default acoustic model configuration offered by the toolkit 
contains a constant number of HMM states for each phone 
and does not control the HMM state duration. The 
requirements to the acoustic model imposed by the phonetic 
segmentation task are not identical to those of the speech 
transcription task.  

Duration control has been shown to improve 
segmentation accuracy in previous works [2][4][5]. 
Particularly, large segmentation errors can occur at slowly 
varying phone transitions due to a likelihood domination of 
one phone's lateral state over the other's. To reduce this 
phenomenon, we restrict the number of frames a lateral state 
can occupy. This is easily implemented by duplicating the 
lateral states, keeping the emission model shared between 
them, and replacing the self-transition loop by a transition to 
the next state. Figure 1 shows a modified 5-state left-to-right 
topology that limits the number of frames in lateral states to 
4. This approach generalizes the idea exploited in [5], where 
the lateral states duration is limited to a single frame.  

Apart from the restriction on the duration of lateral 
states, the number of states per phone and the frame rate 
imply minimal phone duration. The configuration used in 
this work enforces a minimal duration of 25 ms for most 
phones, including plosive closures, and a minimal duration 
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of 15 ms for plosive bursts. However, there are phonetic 
contexts, in which this constraint has to be relaxed to allow 
shorter phones. In this work, we remove the duration 
constraint on plosive closures when following a stop 
consonant – either oral or nasal. This is achieved by 
allowing state skipping in the relevant phone units. 

Once HMM topology is set up, a triphone-context 
dependent HMM-GMM model is trained. As initial features 
for the HMM alignment, we use 13-dimensional normalized 
PLP cepstra vectors extracted from 20 ms analysis window 
with 5 ms frame shift. The feature normalization includes 
cepstral mean subtraction (CMS) and cepstral variance 
normalization (CVN). In case of a multi-speaker training 
corpus, the CMS and CVN are performed on a per-speaker 
basis, and speaker-wise vocal tract length normalization 
(VTLN) frequency warping function is estimated and 
applied to the feature vectors. Then, at each frame, feature 
vectors associated with 17 consecutive frames surrounding it 
are concatenated, and an LDA transform is applied to 
project the concatenated vector down to 40 dimensions. 
Finally, features are adapted per speaker using feature space 
maximum likelihood linear regression (fMLLR). 

The segmentation is determined by the usual Viterbi 
alignment between the given phonetic transcript and the 
acoustic observations sequence using the HMM-GMM 
acoustic model. Model space MLLR adaptation is performed 
prior to the alignment. 

 
2.2. Local boundary refinement 
 
In order to improve the precision of phone boundaries, the 
segmentation obtained by the forced-alignment is refined by 
locally adjusting phone boundary positions. 

The local boundary refinement task can benefit from 
acoustic features with a high temporal resolution. Hence we 
augment the 40-dimensional basic feature vectors used in the 
HMM alignment with two 20-dimensional MFCC vectors 
extracted at a distance of ±5 ms. The MFCC vectors are 
CMS and CVN normalized and in the case of multi-speaker 
training corpus the VTLN warping transform available from 
the HMM alignment step is applied to them.  

The final position of each boundary is set to the most 
likely position, in the vicinity of the original boundary, 
based on a phone-boundary acoustic model described below. 

The phone transitions, or diphones, are clustered by a 
regression tree, adopting the same phonetic classes used in 
the construction of the HMM context tree. A multiclass 
SVM model [6] with a probability model [7] is trained per 

leaf for the following three classes: boundary, left-phone and 
right-phone. Training feature vectors for the negative classes 
(left-phone and right-phone) are extracted at offsets of ±10 
ms and ±20 ms from the true boundary. Training feature 
vectors for the positive class (boundary) are extracted at the 
true boundary as well as at offsets of ±1 ms around it.  

In run-time, each boundary is processed independently 
of the others. The search interval S is centered at the 
boundary and has duration of 40 ms or the minimum 
duration of the two surrounding phones. Feature vectors are 
extracted within the search interval at frames associated with 
time moments {tk}. 1 ms frame shift (tk-tk-1=1ms) was used 
in this work. Each feature vector is fed to the SVM, and the 
positive class scores P+(tk) emitted by the SVM [7] are used 
to calculate an error function (1) for each hypothetic 
boundary position t. The error function (1) may be viewed as 
the expected boundary estimate error if the normalized SVM 
confidence measures Q(tk) are considered as the probability 
distribution of the boundary position over the search 
interval. The final boundary is set at the position minimizing 
the error function.  
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2.3. Adaptation of the HMM-GMM model for TTS 
corpus 
 
As the final step of the HMM-GMM acoustic modeling 
(prior to the local refinement), the HMM-GMM model can 
be further adapted to the target speaker data, making use of 
the large amount of single-speaker data available. We deal 
with two cases: 1) a multi-speaker manually segmented 
corpus is available; 2) only a limited amount of manually 
segmented data of the target speaker is available.  The 
second case may be relevant to building a TTS system in a 
new language. In such case, a small amount of data may be 
manually segmented (or corrected) for the purpose of 
bootstrapping the acoustic model training.  

In the first case, an initial HMM-GMM model is trained 
on the multi-speaker manually segmented corpus in a 
speaker adaptive manner as described above. Then, 
alignment is performed on the entire corpus, and the 
resulting segmentation is used for training of a new single-
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Figure 1: Modified 5-state topology example 
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speaker model, hereafter referred to as full target data (FTD) 
model. 

In the second case, the initial model is trained on the 
limited amount of the manually segmented target data 
available. Then, FTD model is trained on the entire target 
data as in the first case. It should be noted that the portion of 
the manually segmented data in the training of that model is 
small. Hence we use the maximum mutual information 
(MMI) based discriminative training with I-smoothing to 
update the model parameters based on the manually 
segmented data. An approximation of the MMI objective 
function is used, where the denominator lattice consists of 
only a single path - the alignment generated by the FTD 
model. 
 

3. EXPERIMENTAL RESULTS 
 
3.1. Setup 
 
The experiments in this paper are conducted on the TIMIT 
continuous speech corpus [8] and on a proprietary male US 
English TTS corpus. The TIMIT corpus contains 6,300 
phonetically rich utterances read by 630 speakers. The 
standard NIST training set consists of 3,696 sentences and 
the test set includes 1344 utterances uttered by 168 speakers. 
The TIMIT phoneme set is mapped to a smaller set of 49 
phones as in [9] (including the glottal stop). 

The TTS corpus contains about 10K sentences, out of 
which 1000 sentences are manually segmented and are used 
for training and testing.  

Segmentation accuracy is calculated by comparing the 
estimated boundary positions to the respective positions in 
the manually segmented data. Two accuracy measures are 
reported: 1) the percentage of the correctly estimated 
boundary positions within tolerance of 10 ms, 20 ms, 30 ms 
and 40 ms; 2) the mean absolute error (MAE) of boundary 
positions in milliseconds. 

In the following sub-sections, we report results of three 
experiments and analyze the relative impact of the individual 
processing steps on the segmentation accuracy 
 
3.2. Training and testing on TIMIT 
 
The goal of this initial experiment is to assess the basic 
performance of our segmentation method on the TIMIT data 
which is widely used within the scientific community. No 
adaptation to the target speaker data, as described in section 
2.3, is performed due to the small amount of test sentences 
available per speaker. The accuracy results obtained are 
presented in Table 1 where the first row represents the 
accuracy achieved by the first HMM alignment step and the 
second row shows the final result after the local boundary 
refinement. 
 
 

Tolerance System 
10ms 20ms 30ms 40ms 

MAE 

HMM 80.9 94.2 97.6 98.9 7.1 
+SVM 85.2 94.9 97.8 98.9 6.0 

Table 1. Results on the TIMIT test set (training on TIMIT) 

 
3.3. Training on TIMIT and testing on TTS data 
 
The goal of this experiment is to simulate the scenario when 
a multi-speaker training corpus is available and no effort is 
invested in manual segmentation of the target TTS data. The 
initial training is performed using the TIMIT training set and 
the FTD model is built on the entire TTS data set of 10K 
sentences. The evaluation results obtained on the 1000 
sentences TTS test set are presented in Table 2. 
 

Tolerance System 
10ms 20ms 30ms 40ms 

MAE 

HMM 76.2 92.3 96.8 98.5 7.9 
FTD HMM 75.9 93.6 97.7 99.1 7.5 

+SVM 80.5 93.7 97.6 99.0 6.7 

Table 2. Results on the TTS test set (training on TIMIT) 

The rows of the table show the accuracy achieved by the 
initial speaker adaptive HMM model, the FTD HMM model 
and after the local boundary refinement. The results reveal a 
positive effect of the full target data HMM adaptation and 
local refinement. The first improves the accuracy at the large 
tolerances, and the second improves the accuracy at the 
small tolerances, together leading to overall improvement at 
all tolerances. 
 
3.4. Training and testing on TTS data 
 
The goal of this experiment is to simulate the scenario when 
no multi-speaker data is available for training, and to study 
the relationship between the amount of manually segmented 
target data and the segmentation accuracy. The available 
manually segmented TTS data is split into a training set and 
a test set, each consisting of 500 sentences. Table 3 presents 
the HMM alignment accuracy achieved with the initial 
model as a function of the training set size.   
 

Tolerance # of training 
sentences 10ms 20ms 30ms 40ms 

MAE 

50 71.3 88.3 93.5 95.7 10.7 
100 77.1 91.9 96.6 98.2 7.8 
200 80.1 93.5 97.5 98.9 6.8 
500 81.1 94.7 98.0 99.2 6.4 

Table 3. HMM alignment on TTS data with initial model 
trained on TTS data 

Tables 4 and 5 present the HMM alignment accuracy figures 
achieved after the FTD and MMI adaptations respectively. 
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Tolerance # of training 

sentences 10ms 20ms 30ms 40ms 
MAE 

50 71.8 90.4 95.8 97.8 8.8 
100 76.2 92.8 97.3 98.8 7.5 
200 78.4 94.1 98.0 99.3 7.0 
500 79.6 94.7 98.3 99.4 6.6 

Table 4. HMM alignment on TTS data with FTD adapted 
model 
 

Tolerance # of training 
sentences 10ms 20ms 30ms 40ms 

MAE 

50 75.2 91.7 96.6 98.4 8.0 
100 78.3 93.6 97.8 99.0 7.0 
200 81.1 94.7 98.2 99.3 6.4 
500 81.3 95.0 98.4 99.4 6.4 

Table 5. HMM alignment on TTS data with MMI adapted 
model 

Finally we apply the local boundary refinement. The local 
refinement features are common to the different training set 
sizes as the LDA transform of the smallest training set is 
used in all the experiments. The accuracy figures are 
presented in Table 6. 
 

Tolerance # of training 
sentences 10ms 20ms 30ms 40ms 

MAE 

50 75.7 91.7 96.6 98.3 7.8 
100 79.5 93.7 97.8 99.0 6.7 
200 82.4 94.8 98.2 99.3 6.0 
500 84.6 95.4 98.5 99.4 5.5 

Table 6. Final segmentation (MMI HMM+SVM) on TTS 
data 

The experimental results obtained under the “only target 
data” scenario demonstrate consistent reduction of the 
segmentation error level achieved by the final system 
compared to the HMM alignment with the initial model over 
all the tested training set sizes. Also the results reveal the 
relative influence of the consecutive intermediate processing 
steps which is positive in most cases.  
 

4. CONCLUSIONS 
 
The average segmentation accuracy achieved by the 
proposed system at 20 ms tolerance is within the range of 
inter-labeler agreement rates cited in [4] for various corpora, 
and is approaching the best cited inter-labeler agreement rate 
of 96%. The accuracy achieved on TIMIT at 20 ms 
tolerance is higher than previously reported in [2][4][10].  

The evaluations conducted on the TTS data have 
revealed the contribution of the HMM adaption and local 
refinement to the overall accuracy. 

Another important observation is that the availability of 
only 100-200 manually segmented sentences of the target 
speaker resulted in segmentation of the same average 
accuracy of a system trained on a large amount of multi-
speaker data. This may have significant practical implication 
for building TTS voices for new languages. 
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