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ABSTRACT
We propose Gaussian process dynamical models (GPDMs) as

a new, nonparametric paradigm in acoustic models of speech.

These use multidimensional, continuous state-spaces to over-

come familiar issues with discrete-state, HMM-based speech

models. The added dimensions allow the state to represent

and describe more than just temporal structure as system-

atic differences in mean, rather than as mere correlations in

a residual (which dynamic features or AR-HMMs do). Be-

ing based on Gaussian processes, the models avoid restrictive

parametric or linearity assumptions on signal structure. We

outline GPDM theory, and describe model setup and initial-

ization schemes relevant to speech applications. Experiments

demonstrate subjectively better quality of synthesized speech

than from comparable HMMs. In addition, there is evidence

for unsupervised discovery of salient speech structure.

Index Terms— acoustic models, stochastic models, non-

parametric speech synthesis, sampling

1. INTRODUCTION

Hidden Markov models (HMMs) [1] constitute the dominant

paradigm in model-based speech recognition and synthesis

(e.g., HTS [2]). HMMs are probabilistic, allowing them to

deal with uncertainty in a principled manner, and strike an at-

tractive balance between complexity and descriptive power:

they avoid restrictive assumptions such as limited memory or

linearity, but can still be trained efficiently on large databases.

Unfortunately, HMMs are not satisfactory stochastic rep-

resentations of speech feature sequences [3]. Sampling from

HMMs trained on speech acoustic data reveals several short-

comings of the model, in that durations are incorrect and the

sound is warbly and unnatural. Contemporary model-based

speech synthesis systems, HMM-based or not, therefore do

not sample from stochastic models for signal generation.

In this paper we introduce a new paradigm of nonpara-

metric, nonlinear probabilistic modelling of speech, as ex-

emplified by Gaussian process dynamical models (GPDMs).
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This approach has the potential to overcome all principal is-

sues with HMMs and provide more realistic acoustic models.

Like HMMs, GPDMs may later serve as building blocks for

constructing arbitrary speech utterances. In the remainder of

the text, we motivate and describe GPDMs in the context of

acoustic models of speech signals, and present concrete re-

sults from a synthesis application.

2. INTRODUCING GPDMS FOR SPEECH

We here explain the benefits of moving from Markov chains

to continuous, multidimensional state-spaces, and introduce

GPDMs as nonparametric dynamical models of speech.

2.1. Continuous, multidimensional state-spaces

Let Y =(Y 1 . . .Y N ) be a sequence of observations, here

speech features, and let X=(X1 . . .XN ) be the correspond-

ing sequence of unobserved latent-state values. The features

are typically continuous and real, yt∈RD, with D between

10 and 100. We consider Y a D×N matrix random variable.

HMMs have a discrete state-space, xt∈{1, . . . , M} ∀t.
This is sufficient to model piecewise i.i.d. processes, but is not

a good fit for speech since 1) HMMs have stepwise constant

evolution, while speech mostly changes continuously, and 2)

the implicit geometric state-duration distribution of the un-

derlying Markov chain has much greater variance than nat-

ural speech sound durations. Dynamic features and hidden

semi-Markov models [4] have been proposed to deal with is-

sues 1) and 2) separately, respectively. Both shortcomings

can however be addressed simultaneously, by considering a

continuous state-space to represent incremental progress and

intermediate sounds [5]. This is the approach explored here.

Typical speech HMMs use left-right Markov chains to en-

code long-range dependencies between features at different

times, specifically the sequential order of sounds in an utter-

ance. Other dependence-modelling is less structured. Short-

range time-dependencies can be described as time-correlated

deviations from the state-conditional feature mean, e.g., us-

ing dynamic features [3]. This enables gradual changes in ex-

pected value. Variation between comparable times in distinct

realizations is usually only modelled as Gaussian deviations

from a single state-conditional mean value.
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In practice, these correlation-based approaches fail to cap-

ture important structure in speech variation, and do not pro-

duce realistic speech samples [6]. The sampled speech has

a rapidly-varying, warbly quality to it due to the large mag-

nitude of the noise-driven deviations from the feature mean.

To obtain more pleasant-sounding output, speech synthesiz-

ers therefore generally avoid sampling, and only produce the

most likely output sequence. This is known as maximum like-
lihood parameter generation (MLPG) [7].

The models considered here can use multidimensional

state-spaces xt∈RQ to represent structured differences be-

tween realizations. The added state-space dimensions may

for instance track different pronunciations for the same utter-

ance, e.g., stress-dependent pitch and formant evolution.

As both the continuous state-space and the extra dimen-

sions give us flexibility to explain more empirically observed

variation as systematic differences in mean, less variability

will be attributed to residual, random variation. The estimated

noise magnitude will thus decrease, making samples less war-

bly and more realistic. We now consider a specific model on

such state spaces, based on Gaussian processes.

2.2. Gaussian process dynamical models

A dynamical model for Y is defined by 1) an initial state dis-

tribution fX1
(x1), 2) a stochastic mapping fXt+1|Xt

(xt+1 |
xt) describing state-space dynamics, and 3) a state-conditional

observation distribution fY t|Xt
(yt | xt). In speech, xt may

represent the state of the speaker—particularly the sound

being produced—while yt is the current acoustic features.

In a simple HMM describing a speech utterance or phone

(for synthesis), fXt+1|Xt
is usually a left-right Markov chain.

The output fY t|Xt
is often Gaussian for synthesis tasks, but

GMMs are common in recognition. In this paper, however,

both fXt+1|Xt
and fY t|Xt

will be modelled as continuous-

space densities, using stochastic regression based on Gaus-

sian processes (GPs). (For a review of Gaussian processes

please consult [8].) The resulting construction is known as a

Gaussian process dynamical model, GPDM [9, 10].

For the output mapping fY t|Xt
, GPDMs use a tech-

nique known as Gaussian process latent-variable models

(GP-LVMs) [11]. These assume the output is a product of

Gaussian processes, one for each yt-dimension, with a shared

covariance kernel kY (x, x
′) that depends on latent variables

Xt. The processes are conditionally independent given xt,

similar to assuming diagonal covariance matrices in conven-

tional HMMs. The conditional output distribution becomes

f(y|x,β,w)= 1√
(2π)DN |KY (x,β)|D

·∏D
d=1 wd exp(− 1

2w
2
dydK

−1
Y (x,β)yd

T ), (1)

where the kernel matrix has entries (KY )t, t′ = kY (xt, xt′ |
β), β being a set of kernel hyperparameters. The scale fac-

tors wd compensate for different variances in different output

dimensions. The entries of X are assumed Gaussian and i.i.d.

Using GP-LVMs for the output mapping essentially as-

sumes that acoustic features yt have similar characteristics

(mean and standard deviations) for similar speech states xt,

e.g., the same phone being spoken, though the details depend

on the chosen kY . This is similar in principle to HMMs, but

is more flexible and does not assume that xt is quantized.

GP-LVMs were designed as probabilistic, local, nonlinear

extensions of principal component analysis (PCA), and MAP

estimation in a GP-LVM will therefore attempt to attribute as

much as possible of the observed acoustic y-variation as due

to variations in the underlying speaker state Xt.

GP-LVMs assume X is i.i.d., and have no memory to

account for context or to smooth estimated latent-space po-

sitions over time. GPDMs endow the GP-LVM states with

simple, first-order autoregressive dynamics fΔXt|Xt
, so that

ΔXt=Xt+1−Xt is a stochastic function of Xt. (Higher-

order dynamics and other constructions are also possible [9].)

Specifically, the next-step distributions for the ΔXt compo-

nents are assumed to be given by separate Gaussian processes

(with a shared kernel kX(x, x′)), conditionally independent

of other dimensions and of Y given xt. The joint probabil-

ity distribution is more involved than for the GP-LVM, as the

dynamics map a space onto itself. It can be written

f(x|α)=fX1
(x1)

1√
(2π)Q(N−1)|KX (x,α)|Q

· exp(− 1
2 tr(ΔxK−1

X (x,α)ΔxT )) (2)

where Δx=(x2−x1, . . . , xN −xN−1). This distribution is

not Gaussian as KX depends on x, and fair sampling requires

Metropolis-type algorithms. An approximation called mean
prediction [9] exists for sequentially generating latent-space

trajectories of high likelihood, analogous to MLPG.

Using GPs to describe state dynamics represents an as-

sumption that the state of the speaker, and thus the acoustic

output, evolves similarly when the state is similar, quite like

how HMMs work but without the discretization.

By endowing all hyperparameters with priors, a fully

Bayesian nonparametric dynamical model is obtained.

MAP estimating the unobserved GPDM variables α, β,

W , and X is straightforward using gradient methods. How-

ever, there are many local optima and the estimated latent-

space trajectories are typically quite noisy, since the GPDM

tries to place as much variation as possible in the latent space.

To prevent such overfitting, the unknown X can be in-

tegrated out using Monte-Carlo EM, leading to low process

noise and highly realistic samples in a motion capture appli-

cation [10] (video). Alternatively, one may choose a fixed α
with low noise to obtain smooth dynamics, as we do here.

3. IMPLEMENTING GPDMS FOR SPEECH

GPDMs were first introduced to model motion capture data,

and we are unaware of any prior applications to speech.1 We

1A reviewer noted that [12] provides an application to ASR; it was pub-

lished while this paper was in review.
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here discuss specific issues in using GPDMs as speech acous-

tic models, and propose an initialization scheme for sequen-

tial signals such as speech utterances.

3.1. Feature representation

To create speech features suitable for GPDMs and to synthe-

size speech, we employed the widely used STRAIGHT sys-

tem [13]. The STRAIGHT analysis yields: 1) an F0 con-

tour with voiced/unvoiced indication, 2) a filter spectrum, and

3) an aperiodicity spectrum. To get a more compact feature

set, we represented the two spectra by 40 and 10 MFCCs, re-

spectively, and downsampled the features to 100 fps. We also

removed the mean of each component over the dataset.

The relative scale of the STRAIGHT outputs is arbitrary.

Even though the scaling factors w in (1) can in principle com-

pensate for different feature SNRs, we normalized all dimen-

sions to have unit noise magnitude, as this is beneficial for

PCA-based initialization schemes. Component SNRs were

estimated by fitting a third-order AR-process to each dimen-

sion and looking at the standard deviation of the driving noise.

The HTS system [2] uses a mixture of continuous and

discrete distributions to represent voiced pitch or unvoiced

excitations. This is unsuitable for GPs, which are designed

for continuous data spaces. For simplicity, we have restricted

ourselves to voiced speech in this initial work.

3.2. Covariance functions

Because the feature data mean has been removed it is appro-

priate to use zero-mean GPs. We then only need to specify

kX and kY to have a fully defined model.

For the dynamics, we chose a simple squared exponential

(RBF) kernel with a noise term,

kX (x, x′) = α1 exp
(
−α2

2
‖x− x′‖2

)
+ α−1

3 δx,x′ . (3)

Linear and higher-order kernel terms are left as future work.

A similar RBF kernel with a noise term is an appealing

choice also for kY , to model smooth output with some resid-

ual variation. Rapid changes and localized discontinuities

such as plosives can be modelled with, e.g., neural network

kernel functions [8], though that has not been pursued here.

3.3. Advanced initialization

As the likelihood function for the latent x has many local op-

tima, the starting position x(0) in MAP is highly influential

in determining the quality of the final model. We hence went

to some lengths to compute a starting position that well ex-

presses our expectations on process behaviour.

Initializing the latent-space variable trajectory by PCA, as

in [10], ignores the time dimension of the data and produces

a model where acoustically similar frames will evolve simi-

larly regardless of utterance position, like in a (non-hidden)

Markov chain. This is precisely what we strive to avoid.

As the most important variation in speech occurs along

the time dimension, we initialized the first latent coordinate

by the time from utterance start, as an indicator of progress

through the sentence. Multiple training utterances were

aligned by dynamic time warping. Remaining x-dimensions

were initialized by PCA, so that points at comparable times

were spaced closer or farther according to acoustic similarity.

As the scale of the first latent dimension is arbitrary rel-

ative to other axes, it was rescaled according to
∣∣Δx1

(0)
∣∣
2

= 1
Q−1

∥∥Δx2:Q
(0)

∥∥
2
, to have comparable RMS Δx-magni-

tude to the remaining dimensions. Finally, the mean was

removed and all axes were rescaled equally so that
∥∥x(0)

∥∥
2

=DN , to match the Gaussian prior mean and variance.

4. EXPERIMENTS

In order to assess the properties of GPDMs as stochastic mod-

els of speech, we performed experiments with utterance syn-

thesis and speech representation, and contrasted the results

against comparable HMMs.

4.1. Speech generation

For synthesis applications, we are interested in the quality of

samples and maximum probability output of our speech mod-

els. This was investigated in a subjective listening test.

The test was based on a dataset containing the fully voiced

utterances “I’ll willingly marry Marilyn” and “our lawyer will

allow your rule,” each spoken three times by a single, male

speaker. Separate models were trained on the voiced frames

of each of the two utterances. For GPDMs, we set Q=1, fixed

the dynamics hyperparameters at 20 dB SNR to get smooth

latent trajectories, and performed 1000 gradient updates for

training. Left-right HMMs with 40 states per second were

also trained on the data using the Baum-Welch algorithm. By

not including dynamic features we obtain comparable models

that cannot pass any information between frames, apart from

the current position within the utterance.

The listening test included the voiced sections of raw

database utterances, speech resynthesized from training-data

features, mean-predicted output and random samples2 from

the GPDM, and MLPG and random samples from the HMMs.

Eight subjects were asked to rate these deterministic and

stochastic signal sources on a scale from 0 (completely un-

natural) to 100 (completely natural) using a MUSHRA-like

interface. The resulting scores are summarized in table 1.

In the test, subjects judged GPDM output as more nat-

ural than that of HMMs, both for deterministic signals and

sampled output. The differences are significant according to

paired t-tests (p=0.0017 and 0.014, respectively). GPDM

duration modelling, in particular, is noticeably better as the

continuous state-space can represent incremental progress

2We used a fast, approximate procedure for sequentially generating latent

trajectories. It is similar to mean prediction, but each new point is sampled

from the Gaussian next-step distribution, rather than just taking its mean.
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“I’ll willingly...” “Our lawyer...”
Sound source Mean St. dev. Mean St. dev.

Database speech 100 0 100 0
Resynthesized 66 19 70 16

GPDM mean pred. 74 15 78 18
GPDM sampled 25 11 23 16
HMM MLPG 63 13 62 15

HMM sampled 16 18 10 10

Table 1. Naturalness scores from listening test.
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Fig. 1. Latent-space trajectories separated in 3D.

through the utterance. Sampling consistently scored below

deterministic output due to the unnatural, uncorrelated noise.

Interestingly, subjects preferred GPDM mean-predicted

output over speech resynthesized from the training data fea-

tures (p=0.038). A possible explanation is that the mean-

predicted output is smoother and more stylized.

4.2. Speech representation

In a second experiment, we explored how the additional state-

space dimensions in GPDMs can represent multimodal distri-

butions and speech variability. For this, we used six examples

of the utterance “our lawyer will allow your rule,” three times

pronounced with the stress on “lawyer,” and three times in-

stead stressing the word “allow.”

If not handled properly, data inconsistencies like this can

degrade the quality of traditional speech synthesis systems.

However, a GPDM with Q=3 trained on the data correctly

separates the two prosodic variations in the latent space—

shown in blue (on top) and red (below) in figure 1—and can

represent both pronunciation patterns simultaneously. At the

same time, the three curves from each variant are placed close

together, meaning that information is shared between these

examples and a common stochastic representation has been

learned. Note that this structure was not imposed before-

hand (as is typically necessary to model the situation with an

HMM), but was recovered automatically from the data.

5. CONCLUSIONS AND FUTURE WORK

We have described how models with continuous, multidimen-

sional state-spaces can avoid the shortcomings of traditional,

discrete-state hidden Markov models of speech. Such rep-

resentations can be constructed without restrictive paramet-

ric assumptions using Gaussian process dynamical models.

The advantages of nonparametric speech modelling through

GPDMs include automatic structure discovery and more natu-

ral synthesized speech, as affirmed by experimental evidence.

Further efforts are needed, particularly for the training

stage, to realize the full potential of the models and to apply

them as building blocks in arbitrary speech synthesis. Work is

presently underway to address these limitations. We are also

investigating adding dynamic features for improved, frame-

correlated noise modelling.
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