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ABSTRACT

This paper describes experiments in creating personalised chil-
dren’s voices for HMM-based synthesis by adapting either an adult
or child average voice. The adult average voice is trained from
a large adult speech database, whereas the child average voice is
trained using a small database of children’s speech. Here we present
the idea to use stacked transformations for creating synthetic child
voices, where the child average voice is first created from the adult
average voice through speaker adaptation using all the pooled speech
data from multiple children and then adding child specific speaker
adaptation on top of it. VTLN is applied to speech synthesis to see
whether it helps the speaker adaptation when only a small amount of
adaptation data is available. The listening test results show that the
stacked transformations significantly improve speaker adaptation for
small amounts of data, but the additional benefit provided by VTLN
is not yet clear.

Index Terms— Speech synthesis, Adaptation, Child Speech,
VTLN and Stacked Transformations.

1. INTRODUCTION

Speaker-adaptive Hidden Markov Model (HMM)-based speech syn-
thesis, where an average voice model is adapted to a new speaker
with very little training data is going to have a large impact on speech
technology applications. Users can have systems speaking in their
own voice or in the person’s voice of their choice. A typical HMM
based speech synthesis system consists of statistical models to rep-
resent the acoustic and prosodic characteristics that are used for syn-
thesising speech in a source-filter fashion[1]. Adaptive synthesis is
based on models trained from a large population of speakers and that
form a representative average voice model for this entire population.
This average voice model is adapted to a particular speaker of inter-
est using a few utterances spoken by that speaker, which is later used
for synthesising speech for that speaker.

Creating a good single-speaker voice model requires at least a
few hours of training data from that speaker, whereas adapting the
average voice to a particular speaker requires around 3 minutes of
recorded speech for generating good quality voice [2]. It is interest-
ing to note that as few as five sentences are sufficient to make a voice
resemble the target speaker and is enough for listeners to recognise
the correspondence between the natural and synthetic voices[3].

It is common to use an average voice model that is built from
a representative sample of speakers in a population (for example:
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“Finnish adults”) to synthesise speech for a speaker having similar
voice characteristics of the population. A recent study discusses the
relation between the average voice model and the target voice for
adaptation. It has been shown that, the more the voices differ, the
worse the quality of the resulting adapted voice [4]. There have been
very few studies to understand how an average voice model adapts
to speakers in a different population group. Such a situation arises
when we do not have sufficient training data to create a robust aver-
age voice model, but do have enough training data for speaker adap-
tation. An example for such a situation will be to adapt the adult
average voice model to synthesise a child voice, or to synthesise a
heavily accented speaker from an unaccented average voice model.

This paper focuses on synthesising a child’s voice given an av-
erage voice model trained on the adult data. Training a synthesiser
for children’s speech is known to be challenging, especially because
of the difficulties in obtaining a satisfactory amount of phonetically
balanced training data [5, 6]. Because of this, HMM-based speech
synthesis is well suited for the task, as the missing phonetic models
can be estimated from available data quite reliably.

In this paper, we present investigations on generating child
voices by adapting average voice models. We will show that adapt-
ing a high-quality average adult voice model or an average voice
model built using a limited amount of child training data may not
be ideal for synthesising child voices. In order to improve the syn-
thetic quality of child voices using an adult average voice model, we
propose an approach called stacked transformations. The idea is to
create a cascade (or stack) of transforms, where we first adapt the
average adult voice model to a representative child average voice
model which is further adapted to a given target child speaker of
our interest. We will show that the proposed approach provides very
good synthetic voices for children when compared to directly adapt-
ing the average voice model. We also investigate the use of vocal
tract length normalisation (VTLN) with stacked transformation to
assess whether it can provide any improvement when there is very
little adaptation data available from the target speaker. We present
listening experiments to support our claims.

The rest of the paper is organised as follows: first we present
the idea of stacked transforms. We then present the idea of using
VTLN in speech synthesis. Later, we present the setup used in our
experiments followed by description of the listening task. We then
present our analysis followed by our conclusion and future work.

2. STACKED TRANSFORMATIONS

The idea of stacked transforms is to use multiple transforms in
speaker adaptation, where each transform has a different role to
play. The idea was presented in [7], where a cascade (or stack) of
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Fig. 1. Illustrating the idea of stacked transformation for synthesis-
ing child voice give the adult average speaker model.

transforms was used to perform speaker adaptation to handle for-
eign accented speech in automatic speech recognition (ASR). In its
original form, the idea was to adapt a speaker-independent average
voice model to an accented target speaker in several steps. First,
the average voice model was adapted to an accent-specific average
model estimated from a group of speakers sharing this particular
accent. Then a traditional speaker adaptation transform was applied
to further adapt the model set to the target speaker.

We follow a similar idea in our synthesis system, but instead
of accented speakers, we use a group of child speakers to help syn-
thesise the voice for a single target child speaker. The high-quality
adult speaker-independent average voice is first adapted to an aver-
age child voice model. The resulting synthetic voice sounds child-
like in terms of pitch, pronuncation and rhythm. This average child
model is then further adapted to a specific target child speaker. The
block diagram shown in Fig. 1 illustrates the idea of stacked trans-
form in synthesis of child voice from the adult average voice model.

The obvious advantage of stacked transformations in speech
synthesis lies in the use of a large corpus to train an initial voice
model. This model has a good coverage of phonetic contexts and
robust model clustering and selection. With a transform trained from
a group of speakers, the model provides a solid basis for speaker
adaptation. Other advantages of stacked transformations include the
possibility of pre-training the domain transformations and reducing
the need for storage space compared to a domain model by itself.

3. VTLN ADAPTATION FOR SPEECH SYNTHESIS

VTLN is widely used in ASR for normalising speaker variability that
arises due to differences in vocal tract lengths of speakers uttering
the same sound. The normalisation is achieved by scaling the spectra
of speakers. VTLN is a simple approach and requires the estimation
of a single parameter that controls the amount of spectral scaling.
In practice, the scale- or warp-factor is estimated using a maximum
likelihood based grid search over a pre-defined range of warp-factors
and is given by:

α̂i = argmax
α

Pr(Xα
i |Wi;λ) (1)

where, Xα
i represent the VTLN warped cepstral features, λ is the

baseline model and Wi being the transcription of the data.
Unlike maximum likelihood linear regression (MLLR) based ap-

proaches that require sufficient data to robustly estimate all the ele-
ments of the transformation matrix, VTLN requires very little train-
ing data to optimally estimate a single warp-factor.

VTLN has been applied to HMM based speech synthesis [8]
and has been shown to improve the synthetic speech quality when
combined with adaptation based approaches [9, 10]. Using VTLN as
a linear transformation eliminates the need to store warped features.
The linear transform is derived by using a bilinear transform, where
VTLN is considered as a filtering operation.

In this paper, we propose an alternative approach to derive the
linear transformation for VTLN using the ideas of band-limited in-
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Fig. 2. Stages in MCEP feature extraction

terpolation. This is based on the idea presented in [11], where the
linear transformation was derived for MFCC features. We modify
the derivation accordingly to suit Mel-generalised cepstral coeffi-
cient (MCEP) features. The MCEP feature extraction is summarised
in Fig. 2. The mel-warping is done using an iterative technique as
discussed in [12] using the plain cepstral values obtained after per-
forming the inverse Fourier transform (IFFT).

The interpolation matrix to obtain VTLN warped MCEP in our
approach is given by:

Aα =
2

N

[
Uα

jk.Vki

]
(2)

where N is the size of fast Fourier transform (FFT) and M represents
the size of MCEP features. The matrices Uα and V are given by:

Vki = [ai cos(2πβik)]0 ≤ k ≤ M − 1
0 ≤ i ≤ N − 1

, βi =
νi
2νs

Uα
jk =

[
aj cos(2πβα

j k)
]

0 ≤ j ≤ N − 1
0 ≤ k ≤ M − 1

, βα
j =

να
j

2νs

and

ai, aj =

{
1
2
, i, j = 0, N − 1

1, i, j = 1, 2, . . . , N − 2

Here βi represent the normalised frequency values after Mel-
warping and βα

j represent the Mel- and VTLN-warped normalised
frequencies. νs represents the sampling frequency of the speech
signal. νi and να

j represent the Mel-warped and Mel- and VTLN-
warped frequencies respectively. The problem is to reconstruct the
values at βα

j given the values at βi and we do this using band-limited
interpolation. The main advantage with this approach is that any fre-
quency warping function can be used for VTLN scaling by choosing
the appropriate values for βα

j . It is important to realize that VTLN
scaling is performed in the linear frequency Hertz (Hz) domain and
not on the Mel-warped frequency domain. So when choosing the
frequencies of βα

j , the VTLN warped frequencies are calculated by
first performing inverse Mel-warping followed by VTLN-warping
and again Mel-warping.

4. EXPERIMENTS

4.1. Corpora

The Finnish SpeeCon corpora is used for training and testing the
models. The corpora consists of speech data from both adults and
children. The child data has 50 speakers with 60 utterances per
speaker. The speakers are equally divided into age groups between
9-10 years and 11-12 years old1 and having equal contributions from
boys and girls. For the experiment, the speakers were divided into a
training set of 40 speakers (total of 2367 sentences) and a test set of
10 speakers, selected randomly and as evenly as possible from the
younger and older, and boy and girl groups. The adult average voice
model used in the experiments was trained using 11057 utterances
from 310 speakers, consisting of 147 female and 163 male speakers.

1The documentation specifies age groups 8-10 and 11-14, but older and
younger speakers are not present in the corpus.
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Table 1. Phonetic and contextual richness in training data. Start and
end silences have been excluded.

Training set Child Adult

Nr. of speakers 40 310
Utterances 2 367 11 057
Unique quinphones 14 658 102 556
Unique contexts 28 946 449 815
Realized phones 84 533 706 608

The sentences spoken by children in SpeeCon had been col-
lected from storybooks. Sentences had been shortened if necessary
and difficult words had been removed. An overview of the phonetic
coverage and complexity of the sentences is shown in Table 1. It is
clear that the phonetic coverage of the child database is much weaker
than that of the adult database, and this is likely to influence the syn-
thesis performance of the trained model sets.

4.2. Model training

The adult and child average voice models were trained from the data
described above using the same methods and tools as the EMIME
2010 Blizzard Entry[13]. In short, context-dependent multi-space
distribution hidden semi-Markov Models (MSD-HSMMs) were
trained on acoustic feature vectors comprising STRAIGHT-analysed
Mel-generalised cepstral coefficients (MCEP), fundamental fre-
quency and aperiodicity features. Speaker-adaptive training is ap-
plied to create a speaker-adaptive average voice model.

For stacked transformations, an average child speaker transfor-
mation was trained as a decision-tree based CSMAPLR transform
[14] of all feature streams and duration. Two different stacked trans-
forms sets were trained: A plain stack with no speaker adaptive train-
ing (St), and a VTLN stack, with the training data normalised with
VTLN (StV). Speaker adaptation was done also as a CSMAPLR
adaptation of all feature streams and duration. HTS tools were used
to train the transforms and VTLN is also implemented in the same
framework.

4.3. Listening Test

For the listening test, we chose three target speakers randomly: 10-
and 11-year old girls and a 9-year old boy out of the test set of ten
speakers. Table 2 summarises the listening experiment performed.
We have four different types of average voice models to synthesize
the child voice for the above mentioned speakers, i.e Ad, Cd, St
and StV. Other than this, we also vary the amount of adaptation data
used to adapt the average voice model for a specific speaker using
3, 10 and 50 utterances. This means, we have three sets of synthetic
voices for each of the average speaker models and all together 12
synthetic voices for a specific speaker using all the average speaker
models. The synthesis samples were generated from the child cor-
pus’s sentence prompts that were not used in training.

The listening test consisted of two tasks, and up to three repeti-
tions of both tasks with different target speakers. 26 listeners started
the listening test. Most listeners finished all three repetitions of both
tasks, for a total of 67 data points for both tasks.

4.4. Task 1: Choosing the Best

In this task, the listeners were presented with a reference sample
(natural speech) and two test samples that are synthesised using any
of the average voice models specified above. The listener was asked

Table 2. Stimuli types in listening test

NS Natural speech
VN Vocoded natural speech

Ad Average voice trained from Adult data
Cd Average voice trained from Child data
St (Stack) Ad adapted using training data of Cd
StV Ad adapted using training data of Cd after

VTLN normalisation.

AdAn Ad Adapted with n sentences (3, 10 or 50)
CdAn Cd Adapted with n sentences (3, 10 or 50)
StAn St Adapted with n sentences (3, 10 or 50)
StVAn StV Adapted with n sentences (3, 10 or 50)

after VTLN normalisation.

AdA vs CdA 10

AdA vs StA 10

AdA vs StVA 10

CdA vs StA 10

CdA vs StVA 10

50
StA vs StVA 10

3

50

3

50

3

50

3

50

3

50

3

0 17 33 50 67A vs B

Fig. 3. Listening test results for task 1.

to answer: “Which sample would you prefer to represent the refer-
ence?”, with possible answers of sample A, sample B and “I cannot
tell the difference”. The test samples were drawn from the avail-
able pool of four voices obtained using the different adaptation tech-
niques (AdA, CdA, StA, StVA), but always use the same amount of
adaptation data. Each sample in the pool was tested against every
other sample, which results in 6 combination of tests for each voice
for varying amount of adaptation data (3,10 and 50 utterances). So,
we have a total of 18 tests for each test speaker and always using an
identical sentence prompt for synthesis.

Figure 3 shows the results for the preference task. The syn-
thetic voice generated using the stacked transformation systems (StA
and StVA) was preferred by majority of the listeners when compared
with the synthetic voice generated by directly adapting the adult av-
erage voice (AdA) or the child voice (CdA). This is statistically sig-
nificant in all cases. It is also interesting to note that, the adaptation
of an adult average voice seems to be preferred to adaptation of child
voice when there is enough adaptation data. On the contrary, CdA is
preferred over AdA when very little data is available.

The role of VTLN adaptation is hard to judge from these results.
We do notice that the stacked system without VTLN (StA) is pre-
ferred over (StVA) when more adaptation data is available, although
a lot of the listeners found it hard to make the judgement. In the 3
sentence case, the systems are equal. This is not yet enough to rec-
ommend using or not using VTLN, and an investigation into listener
preference with even smaller amounts of data might be interesting,
if not entirely useful.
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Fig. 4. Listening test results for task 2 in standard box plot for-
mat. Median marked as a solid circle, box extends to 25th and 75th
percentiles and whiskers to the furthest data points that are not con-
sidered outliers. Outliers are marked with hollow circles.

4.5. Task 2: Naturalness and Similarity

In this task, the listeners were presented with a reference sample and
all the synthesized voices from all the average speaker models for
that speaker. The listener is asked to rate for each voice on a scale
of 1-5 for similarity to the reference and the also for naturality. Each
task was repeated for all the three test speakers. Listeners got the
stimuli within each task in random order.

The results presented in Figure 4 show clearly the effects of
varying amount of adaptation data. With 50 sentences, there is
hardly any difference between the four investigated adaptation
methods. When little data is available, it is not possible to create a
satisfactory voice directly from the adult voice. Some of the task
1 results are further confirmed: Stacked transformations give better
adapted voices than directly adapting the child average voice. An in-
teresting detail is that the listeners find the average voices Cd and St
very similar to the reference voices, something that is not typically
seen in the case of adapting to adult voices. As there is typically
more style variation in recordings of child speech, it is possible that
the listeners are more willing to accept variation in synthetic child
voices than when evaluating synthetic adult voices.

It should be noted, that vocoded samples of child speech seem to
have more artifacts than vocoded adult speech. This raises questions
about the choice of vocoders. STRAIGHT does not perform at its
best with Finnish voices and it is possible that these voice properties
are more prevailing in Finnish children’s speech. Also, the synthe-
sised sentences matched the training data of the children’s average
voice very closely. Test sentences synthesised from long and com-
plex sentences revealed weaknesses in the performance of the child
average voice, and this might be an object for another study.

5. CONCLUSIONS

Collecting enough data to build good-quality synthesis voices from
children can be a daunting task. When there is limited amount of
adaptation data, it is important that the average voice used as the
basis for adaptation is of high quality and in the same domain as
the target speaker. When there are not enough resources to collect

speech data to build such a voice for children, it is possible to use
speech data from adults as a basis and to create a high-quality aver-
age child voice via adaptation.

We have introduced stacked transformations and VTLN adap-
tation to the Finnish HMM-based speech synthesis framework and
shown that with these tools we can create better speaker-adapted
voices for children.
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