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ABSTRACT

Realistic data-driven models of the tongue shape can be obtained by
learning a nonlinear mapping from tongue landmarks to full con-
tours, trained on a dataset of thousands of contours. Semiautomatic
contour extraction from ultrasound takes a lot of time and effort from
an expert, so practically it is preferable to adapt a reference model
given just a few contours from the new speaker. However, adapta-
tion with very few contours is unreliable and prone to overfitting.
We study several forms of regularisation to constrain the adaptation,
and determine the optimal amount of regularisation by leave-one-out
cross-validation. Our results show that good accuracy models can be
found reliably with no user intervention.

Index Terms— tongue model, model adaptation, regularisation,
articulatory databases, ultrasound.

1. INTRODUCTION

Models of the shape of the vocal tract, in particular the tongue, are
useful in applications such as articulatory synthesis and inversion,
animation and visualisation, tracking in biological imaging, and oth-
ers. Data-driven models, estimated using a collection of thousands
of recorded tongue contours (e.g. with ultrasound), allow one to es-
timate realistic models of the midsagittal tongue contour. In par-
ticular, given the location on the tongue contour of 3–4 fleshpoints
(landmarks), one can estimate a predictive mapping from the land-
marks to the full contour [1, 2, 3]; see fig. 1. Nonlinear mappings
[3] achieve errors of 0.2–0.3 mm per point on the tongue, below
the ultrasound measurement error (around 0.4 mm). Since collect-
ing contours is costly, it is convenient to adapt automatically a pre-
dictive mapping trained on lots of data from one speaker to a new
speaker given only a few full contours from the latter. This can be
achieved using a feature-transformation approach [4, 5], resulting in
errors just slightly larger than training with a large dataset (0.1–0.3
mm more). We are interested in the most useful regime in practice,
namely where we have very few adaptation contours (in order that
little effort and time is spent in recording and segmenting contours).
The adaptation idea of [4, 5] is a feature-transformation approach [6]
in a regression setting: we use linear invertible transformations be-
tween the reference and target speakers, so that to predict a tongue
contour from the target speaker, we first map it linearly to the ref-
erence speaker space, then apply its predictive mapping there, and
finally map back (with the inverse linear transformation) to the tar-
get contour. In [4] it was proposed to use a unique, global transfor-
mation for every contour point. This has only 6 free parameters in
total and does very robustly with as few as 5 adaptation contours, but
its accuracy stagnates quickly with more adaptation contours, leav-
ing an significant accuracy gap compared to retraining a model with
those same contours. To correct this, in [5] a purely local approach
was proposed, where each contour point has a separate, local linear
transformation. This has now quite more parameters and does well
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Fig. 1. Prediction problem: given the 2D locations of K landmarks
on the tongue midsagittal contour x, reconstruct the entire contour
y, represented by P 2D points, by a predictive mapping y = f(x).

when more contours are available, but it is now more prone to over-
fitting and becomes unreliable with less than 10 contours, requiring
regularisation.

In this work we consider the local transformation model of [5]
and seek two objectives: (1) to regularise its objective function so as
to enjoy the benefits of both approaches, by establishing a spectrum
between the global approach with few contours and the purely lo-
cal one with many contours. (2) To determine automatically a point
in that spectrum that is optimal for the adaptation dataset provided.
These are described in section 4 of the paper, and we evaluate the
regularisers (as well as a condition-number regulariser) and leave-
one-out cross-validation experimentally in section 5. In addition,
section 3 also shows that the adaptation objective function, which
appears to suffer from ill-conditioning, can be improved with a suit-
able rescaling of the variables. We start with a review of the algo-
rithms for learning and adapting the tongue shape predictive model
in section 2.

2. LEARNING AND ADAPTING A PREDICTIVE MODEL
OF TONGUE SHAPES

2.1. The predictive model of tongue shapes

The goal in this problem is to learn a function which is able to
predict the full tongue contour y = (yT

1 , . . . ,y
T
P )

T ∈ R
2P

consisting of P points yi ∈ R
2 given only the positions x =

(xT
1 , . . . ,x

T
K)T ∈ R

2K of K landmarks xi ∈ R
2 (fig. 1). The

approach proposed in [1] for linear mappings and in [3] for radial
basis function (RBF) networks fits a predictive mapping f by mini-
mizing the predictive square error E(f) =

∑N
n=1 ‖yn − f(xn)‖

2,
given a sufficiently large training set, and f(x) = Wx + w

(linear) or f(x) = WΦ(x) + w (RBF) with M basis functions
φm(x) = exp (− 1

2
‖(x−μm)/σ‖2). The RBF is trained in an

efficient but slightly suboptimal way (as commonly done) by fixing
the centers μm by k–means and cross-validating the width σ and
the regularisation parameter λ.
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2.2. Adaptation with local transformations

Given a small N–contour adaptation dataset {(xn,yn)}
N
n=1, we

adapt an existing predictive mapping f by estimating two invertible
linear mappings gx and gy (with few parameters) that transform the
data between the new and old speaker spaces. Each mapping g is de-
fined as a concatenation of separate, local linear mappings that map
a 2D point to another 2D point:

x̃ = gx(x) =

(
Ax

1
x1+bx

1
...

Ax

K
xK+bx

K

)
, ỹ = gy(y) =

(
A

y

1
y1+b

y

1
...

A
y

P
yP +b

y

P

)
.

The adapted predictive mapping is given by g−1
y ◦ f ◦ gx and

requires estimating 6(K + P ) parameters that we write collectively
as (Ax,bx,Ay,by). The adapted model is linear if f was linear,
and a basis function network where the basis functions are non-radial
if f was a radial basis function network. In the global transformation
method of [4], Ax

i = A
y
j = A and bx

i = b
y
j = b, so there were

only 6 parameters. To estimate (Ax,bx,Ay,by), we minimize the
predictive squared error:

minE(Ax,bx,Cy,dy) =
N∑

n=1

∥∥yn − g
−1
y f(gx(xn))

∥∥2
where we introduce new parameters Cy

j , d
y
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instead of gy, simplifying the optimization (no matrix appears as an
inverse).

3. EFFECTS OF RESCALING

During running some preliminary experiments the following obser-
vations conducted us towards the fact that our problem is suffering
from the bad scaling: slowness of the optimization algorithm (al-
though the BFGS algorithm is expected to be superlinear, the algo-
rithm was so slow), ill-conditioned Hessian, absolutely small step
size and tiny deviation from the initial point for portion of the pa-
rameters and huge deviation from the initial point for the rest at the
end of the optimization. So we decided to normalize the data to
have zero mean and approximately unit variance along each dimen-
sion (by subtracting the global mean and dividing by the trace of the
covariance matrix). The experiments with the normalized data were
much faster and less ill-conditioned. ForN = 100 contours the RBF
adaptation algorithm has 160 iterations which takes 5.3 minutes for
un–normalized dataset and 2.11 minutes for the normalized one.

4. REGULARISERS

We study three different regularisers in this paper, one that penalises
high condition number transformations, and two that encourage all
transformation matrices to be identical.

Condition number regulariser According to global feature nor-
malization with partial contours [8], using a regularisation term
makes the reconstructed contours more realistic. The motivation
behind that particular choice of regularisation was the expectation
that the ideal transformation should not be too far from a simple
translation, rotation or sheering (which has cond (A) = 1). So
choosing a regulariser that penalises the high-condition-number
transformations is not a bad choice (Equation(1) which we call it
Condition Number Regularizer (Cond#)).

λC(Ax,Cy) = λ1

(
K∑
i=1

C(Ax
i ) +

P∑
i=1

C(Cy
i )

)
(1)

Directly minimizing C(A) = cond (A) = ‖A‖2 ‖A
−1‖2 is diffi-

cult, so [8] used instead the much simpler

C(A) = tr (AT
A)−D det (AT

A)
1/D

for AD×D, (2)

which satisfies C(A) ≥ 0 and C(A) = 0 iff cond (A) = 1 (so it
is minimal when cond (A) is minimal), and is piecewise quadratic
for D = 2. Empirically this is true to some extent, and for good
values of λ1, good solutions can be achieved. However, we observe
that not all matrices have so low condition number, so imposing this
assumption could be too restrictive.

Chain regulariser In adaptation with local feature transforma-
tion [5], we observed that using the same regularisation term as
Equation(1) leads to two contradictory effects in two regions. When
the number of adaptation contours is small, regulariser causes reduc-
tion in the value of point-wise RMSE and its variance, but when the
number of adaption contours is large, it causes increase in the value
of point-wise RMSE. Also we have observed that in few-contour
region the global feature normalization method performs better than
its local counterpart. The key aspect of global adaptation method
is the application of a similar transformation to all landmark and
contour points. Therefore it is a good idea to select a regularisation
term that requires all transformations in the local adaptation method,
be close to each other when the number of available contours is
small. One choice for this purpose is the Chain Regularizer (Chain):

R2(A
x,Cy) = λ2(R2(A

x) +R2(C
y)) (3)

R2(A
x) = ‖Ax

2 −A
x
1‖

2 + ‖Ax
3 −A

x
2‖

2 + · · ·+ ‖Ax
K −A

x
K−1‖

2

This allows A1 to drift from AK (even if each consecutive pair of
matrices are quite close) and so to have somewhat different transfor-
mations for the tip and back of the tongue.

Variance regulariser Another regularisation term that is also ca-
pable to force all the transformations be close to each other is what
we call Variance Regularizer (Var):

R3(A
x,Cy) = λ3(R3(A

x) +R3(C
y)) (4)

R3(A
x) = tr (cov(vec (Ax

1 ) , . . . , vec (A
x
K)))

where vec (A) concatenates the columns of a matrixA into a single
column vector. This encourages all matrices to be similar no matters
where on the tongue they are.

One could expect that in both Chain and Var regularisers, when
the regularisation parameters are very large, they would derive the
optimisation algorithm toward transformations which are identical.
This allows us to use theE objective function rather than the proxim-
ity objective function F which was used in the global feature trans-
formation (in the global method, since all the variables are coupled
optimising of E is difficult). We should notice that the chain and
variance regularisers are quadratic, so they do not make the optimi-
sation problem, more nonlinear than it already is. However, they
couple together all the matrices {Ai} and all the matrices {Ci},
which appear decoupled in the Cond# regulariser. However, this
makes little difference with BFGS. Also, one may realise that the
objective function can be seen as a quadratic-penalty [7] solution for
finite penalty of the constrained optimisation problem: maxAi,Ci

E
s.t. A1 = · · · = AK ,C1 = · · · = CP . Thus, for large λ the
solution tends to the global method. We compare these three regu-
larisation terms in our experiments.
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Leave-One-Out Cross Validation (LOO) In a real situation one
may only have access to a few contours that should be used for adap-
tation and also for finding the best values of the related parameters.
A widely used approach in this case would be doing the Leave-
One-Out crossvalidation for finding the parameters. As in [9] let
K : {1, ..., N} �→ {1, ..., K} be an indexing function which indi-
cates the partition to which the observation i is allocated by randomi-
sation. Denote by f̂−k(x) the fitted function, computed with the kth
part of the data removed. Then the cross validation estimate of the
prediction error is:

CV(f̂ , λ) = 1
N

∑N
i=1 L(yi, f̂

−k(i)(xi, λ))

In our experiments the tuning parameter λ is one of the λ1, λ2 or
λ3 that we introduced in section 4. We find the value for λ which
minimises the above equation by looking for it in a particular range
of values. We did the LOO for all the three proposed regularisers
and the Fig.3 shows the results.

5. EXPERIMENTS

Dataset We use the ultrasound database [3] created at Queen Mar-
garet University and the University of Edinburgh. It contains two
speakers (one male, maaw0, and one female, feal0) with different
Scottish accents. Each speaker recorded a set of 20 British TIMIT
sentences designed to be phonetically balanced. Recordings for
maaw0 and feal0 were done in two and one session, respectively.
Each tongue contour contains P = 24 points for both speakers. We
partitioned the data for each speaker to training and testing sets. The
male speaker contained 2 236 training frames and 1 491 testing, and
the female one contained 4 363 training and 2 909 testing frames.

Results Fig. 2 shows the predictive error per contour point as a
function of the number of contours N , for the three types of regu-
larisation that we introduced in section 4: Cond#, Chain and Var.
In these experiments we assumed that there were only N contours
available for adaptation but the reported errors were based on a sepa-
rate test dataset to which we had access. With Chain and Var it is pos-
sible to find a value for λ which gives small error both in few– and
large–contour regions. Therefore we can modulate between purely
local (λ = 0) and purely global (λ → ∞) feature transformation
methods for Chain and Var but not the Cond# (the error curves in
few–contour regions are blown up for Cond#). Both Chain and Var
seem to switch continuously from the local case (very low error) to
the global one (stagnation error). We can compare these regularisers
in terms of final error they achieve and their robustness. In Fig. 2 we
define the optimal lower envelope as the minimum achieved error
over λ at each value of N . By comparing these lower envelopes we
can see for linear adaptation Chain and Var are better than the Cond#
and for RBF adaptation all of these three regularisers are compara-
ble (although Var is a bit better than others). In large N region,
the Cond# is more robust to the value of regulariser parameter than
Chain and Var (all the curves no matter what the λ is, are close to-
gether and to the optimal one). However, since the optimal error in
large N region is correspondent to λ = 0, there is no need to regu-
larise in this region. Fig. 3 plots the results of performing the LOO
cross validation method when we have only N = 7 contours for
the adaptation. With small N , the cross-validation curves show sig-
nificant variability depending on the particular N contours provided
(fig. 3 shows two such curves in each plot). However, the location of
the optimal λ value does not vary much, which indicates that LOO

cross-validation can be used to estimate the optimal amount of reg-
ularisation for the adaptation set provided. Also in Fig. 3 the dashed
curve is from Fig. 2 and forN = 7. The results confirm that even in
this practical situation, the value for the λ that LOO cross validation
achieves, is close to the best one (for instance for RBF network and
Var, the best value for λ is λ3 = 105 (Fig. 2), which matches with
the corresponding results of Fig. 3). It should be noticed that from
LOO plots one can eyeball the location of the minimiser (the region
in which the minimiser exists in red and blue curves, almost match
with the dashed one). The reason that in general the errorbars in
Fig. 3 are larger than Fig. 2 is that the results of Fig. 3 are for LOO
cross validation which we use only one test vector for computing the
test error. However in Fig. 2 as mentioned earlier we had a separate
test set. The Var is less sensitive to the exact value of the regulariser
parameter than Cond# and Chain (the range that the minimiser exists
in Var is wider than Cond# and Chain in Fig. 3). So in general the
Var is a better choice to use in a practical problem.

6. CONCLUSION

We have studied several forms of regularisation for adapting a tongue
shape model using local feature transformations. While all our reg-
ularisers helped to estimate a good accuracy model with very few
adaptation contours, we found it most effective to penalise the trans-
formation matrices’ variance. This smoothly blends a global adapta-
tion using a single transformation into a local adaptation using a dif-
ferent transformation at each contour point. A near-optimal amount
of regularisation for a specific adaptation dataset can be obtained au-
tomatically with leave-one-out cross-validation. We have also shown
that centering and rescaling the data accelerates the optimisation.
Acknowledgments. Some of the work on section 4 was spurred by
comments from Bhiksha Raj and David Noelle. Work funded by
NSF award IIS–0711186.
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[3] C. Qin, M. Á. Carreira-Perpiñán, K. Richmond, A. Wrench, and
S. Renals, “Predicting tongue shapes from a few landmark lo-
cations,” in Interspeech, 2008.
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Fig. 2. Predictive error E (as RMSE per contour point in mm) after adaptation as a function of the number of adaptation contours N (for
K = 3 landmarks). Each curve corresponds to a different value of the λ. Errorbars over 5 random choices of the N .
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Fig. 3. Leave-one-out cross validation results. Predictive error E (as in fig. 2) after adaptation as a function of the λ (for N = 7 adaptation
contours) for the normalised dataset. The blue and red curves are each for a different, random set of N contours. The dashed curve is from
fig. 2 for N = 7.
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