
COMPLEXITY-AWARE ADAPTIVE JITTER BUFFER WITH TIME-SCALING

Liyun Pang1, Anisse Taleb1, Jianfeng Xu1and Laszlo Böszörmenyi2

1 Huawei European Research Center, Munich, Germany
 {liyun.pang, anisse.taleb, antonio.xujianfeng}@huawei.com

2 Department of Information Technology, University Klagenfurt, Klagenfurt, Austria
office-lb@itec.uni-klu.ac.at

ABSTRACT

In VoIP applications, packet loss, delay and delay jitter are
inevitable and have a large impact on the perceived speech
quality. Jitter buffers are commonly deployed to compensate
for jitter in order to play out the received packets
continuously. For mobile devices, due to limited battery
power, computational complexity has to be kept to a
minimum. In this paper, we propose a jitter buffer
management which takes complexity into consideration.
The algorithm adaptively adjusts the play-out delay under
certain complexity constraints. Simulation results show that
our proposed algorithm can keep complexity under specified
constraints while still optimizing jitter induced packet losses
and average delay.

Index Terms— Adaptive jitter buffer, time-scaling,
computational complexity

1. INTRODUCTION

Packet-switched networks such as local area networks
LANs or the Internet, are used to carry speech, audio, video
or other continuous signals, such as Internet telephony or
audio/video conferencing signals and audiovisual streaming
such as IPTV. However, communications in packet-
switched network has several challenges such as latency,
delay jitter and packet losses. In a VoIP application, the
sender transmits a series of packets over the network to the
receiver at regular time intervals. These packets encounter
variable and unpredictable propagation delays over the
network mainly due to network congestion, improper
queuing, or configuration errors. This results in the so-called
delay jitter where packets arrive at the receiver with variable
and usually unpredictable inter-arrival time or even out of
order. An adaptive jitter buffer is usually deployed at the
receiver in order to compensate for the effects of jitter.

In a jitter buffer, packets are buffered for a certain time
after arrival. At predefined times, each packet is sent to the
source decoder and thereafter played out. Using time-scale
modification, the length of a decoded speech frame can be
changed at the receiver adaptively in response to the jitter
buffer to ensure continuous play-out [1-3]. Such time-scale

modification can either be external or internally integrated
in the decoder [4].

Many algorithms for achieving good performance of
jitter buffering have been reported in the literature. Most
algorithms are either based on achieving a trade-off between
late packet losses and buffering delay [1] or maximizing the
perceived quality [3]. However, to the best knowledge of the
authors, little work has been done to address the issue of the
instantaneous power consumption in jitter buffer
management algorithms. This is especially true for handheld
devices which have limited battery lifetime. In [4], it is
pointed out that jitter buffer management could affect the
computational complexity at the receiver, and a possible
solution is proposed which might reduce the complexity,
however, at the expense of large delay.

In this paper, we propose an adaptive jitter buffer with a
complexity control mechanism. Furthermore, we explore the
relationship between a complexity control parameter and the
resulting delay statistics. The paper is organized as follows.
A brief introduction of jitter buffer management is provided
in Section 2. The computational complexity of the receiver
is introduced in Section 3. Section 4 describes the proposed
complexity-aware jitter buffer management to control the
peak complexity, and also keep the average complexity low.
Experimental results illustrating the performance of the
proposal are presented in Section 5. Conclusions and insight
into future extensions are provided in Section 6.

2. JITTER BUFFER MANAGEMENT

A Jitter buffer management system located at the receiver
usually includes the actual jitter buffer, an Adaptation
Control logic and optionally a Time Scaling, as illustrated in
Fig. 1. Once the jitter buffer contains several packets, it
begins sending the packets to the decoder at a certain rate
based on the buffer status and current network conditions.

In the following, for the sake of simplicity, we will
assume that each packet contains a single speech coded
frame, so "packet" and "frame" are used interchangeably in
this paper. Extensions to cases where a packet might contain
more than one frame are easily derived.

When packet is received and unpacked, the jitter
buffer management analyzes the current network condition

4473978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Fig. 1. Jitter Buffer Management with Time-Scaling

based on packet header information and puts frame in the
jitter buffer. In the Adaptation Control logic, the play-out
time of packet +1 is estimated before its arrival. Frame is
sent to the decoder at its scheduled play-out time. Since the
frame length of frame is the difference between the
estimated play-out delay of packet +1 and the play-out
time of packet , the estimated play-out time is converted to
the expected frame length of , as

 (1)

Reducing the frame length of means decreasing the
play-out time of packet +1. The frame length modification
request is thus sent to the Time Scaling unit. Based on the
request, the decoded samples are stretched or compressed
accordingly. The actual time-scaled length is fed back to the
control logic. The signal obtained at the output of the Time
Scaling unit is ready to be consumed and played out.

3. TIME SCALING AND ITS IMPACT ON
COMPUTATIONAL COMPLEXITY

In many applications, computational complexity is a key
parameter to take into account to ensure good performance
and correct platform dimensioning. It is directly related to
the CPU load when running the decoder, and therefore it is
always desirable to limit the worst-case complexity. The
worst-case complexity measures the resources of an
algorithm required in the worst case. The average
complexity is also an important parameter as it relates to the
energy consumption of the processor and is strongly
correlated to the battery lifetime of the handheld device.

Complexity can be measured in terms of wMOPS
(Weighted Millions of Operations per Second) or MIPS
(Millions of Instructions per Second). The wMOPS value is
typically obtained from the ITU-T simulation software [5] in
terms of basic arithmetic operations, and these operations
are then weighted to estimate the complexity.

In our context, the computational complexity of
decoding frame is expressed as

 (2)

where is the number of operations that the speech
decoder performs to decode the given frame , and is the

 Fig.2. Processing rate of variable frame length

duration of frame , which is normally constant, and
typically 20ms in most currently deployed speech codecs.
While this definition is accurate when expressing the
complexity of a speech codec alone, it fails in reflecting the
actual load on the processor.

In fact, since complexity and frame length are
inversely proportional, when using time-scaling the length
of the decoded speech frame will vary accordingly. When
no time-scaling is applied, the frame length is constant and
is therefore consumed from the jitter buffer to the decoder at
a constant rate, for instance, one frame every 20ms. When
time-scaling is used to change the frame length, the speech
decoding processing rate is variable. We illustrate this with
a time-line example in Fig. 2:

1) time-stretching (shown in blue) renders frames taken
from the jitter buffer and decoded at a lower rate thus CPU
load and complexity are decreased;

2) time-compressing (shown in red) renders frames
taken from the jitter buffer and decoded at a higher rate, so
the CPU load and the complexity are increased.

In conclusion, when time-scaling is used in jitter buffer
management, the actual frame length of the output signal
will be changed and the worst-case complexity will be
increased due to shorter frame. Therefore, this worst-case
complexity should be controlled; otherwise the CPU can be
overloaded and leads to undesirable effects such as a loss of
synchronicity which would lead in the case of voice signals
to annoying clicks in the perceived quality.

4. COMPLEXITY-AWARE JITTER BUFFER
MANAGEMENT

To avoid the problem of complexity overload described in
Section 3, the proposed complexity-aware jitter buffer
management takes the complexity information into account
before sending the time-scaling request. As shown in Fig. 3,
two additional complexity parameters are needed by the
Adaptation Control logic unit. The first parameter, denoted
as , represents a complexity upper bound, i.e. the
maximum acceptable complexity. This parameter is
externally supplied and would depend on the processing
power of the target device. The algorithm would strive to
always be below this worst-case complexity.

The second parameter is the estimated complexity
of the source decoder corresponding to frame . There are

Jitter Buffer

Network
analysis

Adaptation
Control logic

Time ScalingDecoder

Buffer status

playoutpacket frame

Network
information Frame length request

Frame length
feedback

4474

Fig. 3. Complexity-Aware Jitter Buffer Management

many alternatives to obtain such an estimate. For instance,
one could use a lookup table which stores related worst-case
complexity values based on an offline characterization of
the codec corresponding to different sampling rates, bitrates
and in general to various operating points of the codec. A
more accurate approach is to count, during run-time, the
number of operations used by the processor for decoding a
frame. This is similar to the use of profiling tools such as the
wMOPS tools [5] to obtain the estimated complexity per
frame. While this approach is more accurate, the counting of
the number of operations itself can introduce additional
complexity. In the remainder of this paper, we will make use
of the wMOPS tools to validate the proposed algorithm and
simulation results. Other complexity estimation methods are
currently being envisioned for future works.

Based on these two parameters, and , the
Adaptation Control logic unit includes an additional
complexity control part, the processing of which is as
follows:

First the complexity of the decoder including jitter
buffer management is defined as

 (3)

where is the number of operations in the source
decoder implemented for frame , and is the
number of operations in the Time Scaling implemented for
frame , which is a rather constant and small value. is the
expected frame length based on network information and
buffer status analysis. We further define

 (4)
 (5)

where is the original frame duration, e.g. 20ms, and
and are the complexity values for frame over We
assume and use a constant value obtained
from simulation to represent , then (2) is converted to

 (6)

The target of the adaptation unit is to limit the
complexity load according to the following constraint:

 (7)

Therefore, must fulfill:

Then the expected length request min is sent
to the Time Scaling. By controlling that the length of
modified voiced frames never goes below the worst-
case complexity will be ensured not to exceed the externally
set computing ability of the device. This makes the adaptive
jitter buffer more conservative when it comes to decreasing
the play-out delay.

5. EVALUATION AND DISCUSSION

In the experiments conducted four algorithms have been
implemented: the algorithm mentioned in [4] to compress
frames only during silence as Alg.1, the proposed algorithm
with complexity control using wMOPS tools, referred to as
Alg.2, the proposed algorithm with complexity control using
lookup table, referred to as Alg.3, and the algorithm without
complexity control as Alg.4. For the jitter buffer adaptation
and time-scaling, we implemented an algorithm similar to
that reported in [1]. It should be noted that our framework,
illustrated in Fig. 3, is quite general, and can accommodate
various jitter buffer models with time-scaling as well as
various speech codecs. In this evaluation, the AMR-WB
speech codec [6] operated at the 12.65kbps mode was used.
The five trace files from [7], profile 1-4 and profile 6, each
containing 7500 packets or frames, were investigated.
Profile 5 is not used because it is for two frames per packet.
Due to space limitation, we mainly represented the results of
profile 6 here. Profile 6 has the largest jitter among all the
files, and thus represents the worst case scenario for a jitter
buffer management. Similar results could be derived for all
of them.

5.1. Complexity Comparison

Table 1 shows the results of worst-case complexity, average
complexity, late loss rate and average buffering delay of
four algorithms for profile 6. Alg.1 has the lowest peak
complexity, since no compression is used in active speech,
thus almost no additional complexity is required. However,
as is clearly seen, this comes at the expense of larger
buffering delay, this will be further illustrated in Section 5.3.
Our proposed complexity-aware jitter buffer management
algorithms are denoted as Alg.2 and Alg.3, and we use 12
wMOPS as for both. The results obtained are quite
close, showing that the table lookup approach was quite
efficient in determining the complexity of each frame when
compared to the more accurate use of wMOPS tools.

4475

TABLE 1. Complexity for profile 6

worst
wMOPS

avg.
wMOPS

Late_loss
Rate (%)

Avg.
buffering
delay(ms)

Alg.1 7 6.4 0.70 59
Alg.2 12 6.4 0.82 39
Alg.3 12 6.4 0.83 40
Alg.4 14 6.4 0.84 38

Fig. 4. End-to-End delay compared with complexity

Fig. 5. CDF of buffering delay for profile 6

Alg.4 is the jitter buffer management without complexity
control mechanism, and it has the highest observed worst-
case complexity. The average complexity values of the four
algorithms are almost identical, and this is due to the fact
that although compression increases complexity, stretching
which decreases complexity will cancel this resulting in a
similar average complexity.

5.2. Delay and Complexity (Alg.2)

Fig. 4 shows the relationship between the average end-to-
end delay and the worst-case complexity in Alg.2 by varying
the value of . For all the five trace files, the average
end-to-end delay can be reduced at the expense of additional
complexity. Among these files, profile 1 has zero packet
loss in the network and relatively small jitter when

compared to other four trace files, therefore, the benefit of
increasing complexity on the delay is not apparent, since the
average end-to-end delay is already very small.

5.3 Cumulative Distribution Function of buffering delay

Fig. 5 shows the CDF of buffering delay for profile 6. It is a
requirement in [7] that at least 90% of the buffering delay
must be below the delay threshold (the red line). Profile 6
has also zero network packet loss, but very large delay
spikes (around 300 ms). It is shown that both Alg.2 and
Alg.4 can fulfill the requirement. Alg.1 can only reduce the
play-out delay in silence, thus it cannot reduce the delay
under the threshold and then is unable to fulfill the CDF
requirement. All of these algorithms have a late loss rate
lower than 1% which is in line with the requirements [7].

6. CONCLUSION AND FUTURE WORK

We have proposed a jitter buffer management taking the
complexity information into account, and controlling the
worst-case complexity under specified constraints. We show
that it is possible to reduce complexity of the overall system
while still fulfilling the requirements on jitter buffer
management specified by 3GPP in [7].

For future work, it is envisioned to use other
complexity measurement tools instead of the wMOPS.
Furthermore, in order to consider the overall perceived
speech quality, a combination of this approach with a
quality based jitter buffer management algorithm [3] is also
a topic of investigation.

7. REFERENCES

[1] Y.J. Liang, N. Färber, and B. Girod, “Adaptive Playout
scheduling using time-scale modification in packet voice
communications,” in Proc. ICASSP’01, pp. 1445-1448, May 2001.

[2] G. Zhang, H. Lundin, and W.B. Kleijn, “Band Control Policy
of Playout Scheduling for Voice over IP,” in Proc. EUSIPCO’08,
August 2008.

[3] L. Pang and L. Böszörmenyi, “E-Model based Adaptive Jitter
Buffer with Time-Scaling Embedded in AMR decoder,” in Proc.
ICDT’11, pp. 80-85, April 2011.

[4] P. Gournay and K.D. Anderson, “Performance analysis of a
decoder-based time scaling algorithm for variable jitter buffering
of speech over packet networks,” in Proc. ICASSP’06, pp. I-17-I-
20, March 2006.

[5] ITU-T G.191, ITU-T Software Library Tools 2009 User’s
Manual, November 2009.

[6] 3GPP TR 26.976, Performance characterization of the Adaptive
Multi-Rate Wideband (AMR-WB) speech codec, April 2011.

[7] 3GPP TS 26.114, IP Multimedia Subsystem (IMS); Multimedia
telephony; Media handling and interaction, June 2011.

4476

