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ABSTRACT 

In VoIP applications, packet loss, delay and delay jitter are 
inevitable and have a large impact on the perceived speech 
quality. Jitter buffers are commonly deployed to compensate 
for jitter in order to play out the received packets 
continuously. For mobile devices, due to limited battery 
power, computational complexity has to be kept to a 
minimum. In this paper, we propose a jitter buffer 
management which takes complexity into consideration. 
The algorithm adaptively adjusts the play-out delay under 
certain complexity constraints. Simulation results show that 
our proposed algorithm can keep complexity under specified 
constraints while still optimizing jitter induced packet losses 
and average delay. 

Index Terms— Adaptive jitter buffer, time-scaling, 
computational complexity 

1. INTRODUCTION 

Packet-switched networks such as local area networks 
LANs or the Internet, are used to carry speech, audio, video 
or other continuous signals, such as Internet telephony or 
audio/video conferencing signals and audiovisual streaming 
such as IPTV. However, communications in packet-
switched network has several challenges such as latency, 
delay jitter and packet losses. In a VoIP application, the 
sender transmits a series of packets over the network to the 
receiver at regular time intervals. These packets encounter 
variable and unpredictable propagation delays over the 
network mainly due to network congestion, improper 
queuing, or configuration errors. This results in the so-called 
delay jitter where packets arrive at the receiver with variable 
and usually unpredictable inter-arrival time or even out of 
order. An adaptive jitter buffer is usually deployed at the 
receiver in order to compensate for the effects of jitter.

In a jitter buffer, packets are buffered for a certain time 
after arrival. At predefined times, each packet is sent to the 
source decoder and thereafter played out. Using time-scale 
modification, the length of a decoded speech frame can be 
changed at the receiver adaptively in response to the jitter 
buffer to ensure continuous play-out [1-3]. Such time-scale 

modification can either be external or internally integrated 
in the decoder [4].  

Many algorithms for achieving good performance of 
jitter buffering have been reported in the literature. Most 
algorithms are either based on achieving a trade-off between 
late packet losses and buffering delay [1] or maximizing the 
perceived quality [3]. However, to the best knowledge of the 
authors, little work has been done to address the issue of the 
instantaneous power consumption in jitter buffer 
management algorithms. This is especially true for handheld 
devices which have limited battery lifetime. In [4], it is 
pointed out that jitter buffer management could affect the 
computational complexity at the receiver, and a possible 
solution is proposed which might reduce the complexity, 
however, at the expense of large delay. 

In this paper, we propose an adaptive jitter buffer with a 
complexity control mechanism. Furthermore, we explore the 
relationship between a complexity control parameter and the 
resulting delay statistics. The paper is organized as follows. 
A brief introduction of jitter buffer management is provided 
in Section 2. The computational complexity of the receiver 
is introduced in Section 3. Section 4 describes the proposed 
complexity-aware jitter buffer management to control the 
peak complexity, and also keep the average complexity low. 
Experimental results illustrating the performance of the 
proposal are presented in Section 5. Conclusions and insight 
into future extensions are provided in Section 6. 

2. JITTER BUFFER MANAGEMENT 

A Jitter buffer management system located at the receiver 
usually includes the actual jitter buffer, an Adaptation 
Control logic and optionally a Time Scaling, as illustrated in 
Fig. 1. Once the jitter buffer contains several packets, it 
begins sending the packets to the decoder at a certain rate 
based on the buffer status and current network conditions.

In the following, for the sake of simplicity, we will 
assume that each packet contains a single speech coded                 
frame, so "packet" and "frame" are used interchangeably in 
this paper. Extensions to cases where a packet might contain 
more than one frame are easily derived. 

When packet  is received and unpacked, the jitter 
buffer management analyzes the current network condition 
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Fig. 1. Jitter Buffer Management with Time-Scaling 

based on packet header information and puts frame  in the 
jitter buffer. In the Adaptation Control logic, the play-out 
time of packet +1 is estimated before its arrival. Frame  is 
sent to the decoder at its scheduled play-out time. Since the 
frame length of frame  is the difference between the 
estimated play-out delay of packet +1 and the play-out 
time of packet , the estimated play-out time is converted to 
the expected frame length of , as 

                                                              (1) 

Reducing the frame length of  means decreasing the 
play-out time of packet +1. The frame length modification 
request is thus sent to the Time Scaling unit. Based on the 
request, the decoded samples are stretched or compressed 
accordingly. The actual time-scaled length is fed back to the 
control logic. The signal obtained at the output of the Time 
Scaling unit is ready to be consumed and played out. 

3. TIME SCALING AND ITS IMPACT ON 
COMPUTATIONAL COMPLEXITY 

In many applications, computational complexity is a key 
parameter to take into account to ensure good performance 
and correct platform dimensioning. It is directly related to 
the CPU load when running the decoder, and therefore it is 
always desirable to limit the worst-case complexity. The 
worst-case complexity measures the resources of an 
algorithm required in the worst case. The average 
complexity is also an important parameter as it relates to the 
energy consumption of the processor and is strongly 
correlated to the battery lifetime of the handheld device.  

Complexity can be measured in terms of wMOPS 
(Weighted Millions of Operations per Second) or MIPS 
(Millions of Instructions per Second). The wMOPS value is 
typically obtained from the ITU-T simulation software [5] in 
terms of basic arithmetic operations, and these operations 
are then weighted to estimate the complexity.  

In our context, the computational complexity of 
decoding frame  is expressed as   

                                (2) 

where is the number of operations that the speech 
decoder performs to decode the given frame , and is the 

           Fig.2. Processing rate of variable frame length
                
duration of frame , which is normally constant, and 
typically 20ms in most currently deployed speech codecs. 
While this definition is accurate when expressing the 
complexity of a speech codec alone, it fails in reflecting the 
actual load on the processor.  

In fact, since complexity and frame length  are 
inversely proportional, when using time-scaling the length 
of the decoded speech frame  will vary accordingly. When 
no time-scaling is applied, the frame length is constant and 
is therefore consumed from the jitter buffer to the decoder at 
a constant rate, for instance, one frame every 20ms. When 
time-scaling is used to change the frame length, the speech 
decoding processing rate is variable. We illustrate this with 
a time-line example in Fig. 2:  

1)  time-stretching (shown in blue) renders frames taken 
from the jitter buffer and decoded at a lower rate thus CPU 
load and complexity are decreased;  

2) time-compressing (shown in red) renders frames 
taken from the jitter buffer and decoded at a higher rate, so 
the CPU load and the complexity are increased.  

In conclusion, when time-scaling is used in jitter buffer 
management, the actual frame length of the output signal 
will be changed and the worst-case complexity will be 
increased due to shorter frame. Therefore, this worst-case 
complexity should be controlled; otherwise the CPU can be 
overloaded and leads to undesirable effects such as a loss of 
synchronicity which would lead in the case of voice signals 
to annoying clicks in the perceived quality. 

4. COMPLEXITY-AWARE JITTER BUFFER 
MANAGEMENT 

To avoid the problem of complexity overload described in 
Section 3, the proposed complexity-aware jitter buffer 
management takes the complexity information into account 
before sending the time-scaling request. As shown in Fig. 3, 
two additional complexity parameters are needed by the 
Adaptation Control logic unit. The first parameter, denoted 
as , represents a complexity upper bound, i.e. the 
maximum acceptable complexity. This parameter is 
externally supplied and would depend on the processing 
power of the target device. The algorithm would strive to 
always be below this worst-case complexity. 

The second parameter  is the estimated complexity 
of the source decoder corresponding to frame . There are 
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Fig. 3. Complexity-Aware Jitter Buffer Management 

many alternatives to obtain such an estimate. For instance, 
one could use a lookup table which stores related worst-case 
complexity values based on an offline characterization of 
the codec corresponding to different sampling rates, bitrates 
and in general to various operating points of the codec. A 
more accurate approach is to count, during run-time, the 
number of operations used by the processor for decoding a 
frame. This is similar to the use of profiling tools such as the 
wMOPS tools [5] to obtain the estimated complexity per 
frame. While this approach is more accurate, the counting of 
the number of operations itself can introduce additional 
complexity. In the remainder of this paper, we will make use 
of the wMOPS tools to validate the proposed algorithm and 
simulation results. Other complexity estimation methods are 
currently being envisioned for future works.  

Based on these two parameters, and , the 
Adaptation Control logic unit includes an additional
complexity control part, the processing of which is as 
follows: 

First the complexity of the decoder including jitter 
buffer management  is defined as 

                                 (3) 

where is the number of operations in the source 
decoder implemented for frame , and  is the 
number of operations in the Time Scaling implemented for 
frame , which is a rather constant and small value.  is the 
expected frame length based on network information and 
buffer status analysis. We further define 

                      (4) 
                           (5) 

where  is the original frame duration, e.g. 20ms, and 
and  are the complexity values for frame  over We
assume  and use a constant value  obtained 
from simulation to represent , then (2) is converted to 

                                                   (6)             

The target of the adaptation unit is to limit the 
complexity load according to the following constraint: 

                                                                          (7) 

Therefore,  must fulfill: 

Then the expected length request min is sent 
to the Time Scaling. By controlling that the length of 
modified voiced frames never goes below  the worst-
case complexity will be ensured not to exceed the externally 
set computing ability of the device. This makes the adaptive 
jitter buffer more conservative when it comes to decreasing 
the play-out delay.   

5. EVALUATION AND DISCUSSION 

In the experiments conducted four algorithms have been 
implemented: the algorithm mentioned in [4] to compress 
frames only during silence as Alg.1, the proposed algorithm 
with complexity control using wMOPS tools, referred to as 
Alg.2, the proposed algorithm with complexity control using 
lookup table, referred to as Alg.3, and the algorithm without 
complexity control as Alg.4. For the jitter buffer adaptation 
and time-scaling, we implemented an algorithm similar to 
that reported in [1]. It should be noted that our framework, 
illustrated in Fig. 3, is quite general, and can accommodate 
various jitter buffer models with time-scaling as well as 
various speech codecs. In this evaluation, the AMR-WB 
speech codec [6] operated at the 12.65kbps mode was used. 
The five trace files from [7], profile 1-4 and profile 6, each 
containing 7500 packets or frames, were investigated. 
Profile 5 is not used because it is for two frames per packet. 
Due to space limitation, we mainly represented the results of 
profile 6 here. Profile 6 has the largest jitter among all the 
files, and thus represents the worst case scenario for a jitter 
buffer management. Similar results could be derived for all 
of them.  

5.1. Complexity Comparison 

Table 1 shows the results of worst-case complexity, average 
complexity, late loss rate and average buffering delay of 
four algorithms for profile 6. Alg.1 has the lowest peak 
complexity, since no compression is used in active speech, 
thus almost no additional complexity is required. However, 
as is clearly seen, this comes at the expense of larger 
buffering delay, this will be further illustrated in Section 5.3. 
Our proposed complexity-aware jitter buffer management 
algorithms are denoted as Alg.2 and Alg.3, and we use 12 
wMOPS as  for both. The results obtained are quite 
close, showing that the table lookup approach was quite 
efficient in determining the complexity of each frame when 
compared to the more accurate use of wMOPS tools. 
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TABLE 1. Complexity for profile 6 

worst 
wMOPS 

avg.
wMOPS 

Late_loss 
Rate (%) 

Avg.  
buffering 
delay(ms) 

Alg.1 7 6.4 0.70 59 
Alg.2 12 6.4 0.82 39 
Alg.3 12 6.4 0.83 40 
Alg.4 14 6.4 0.84 38 

Fig. 4. End-to-End delay compared with complexity 

Fig. 5. CDF of buffering delay for profile 6 

Alg.4 is the jitter buffer management without complexity 
control mechanism, and it has the highest observed worst-
case complexity. The average complexity values of the four 
algorithms are almost identical, and this is due to the fact 
that although compression increases complexity, stretching 
which decreases complexity will cancel this resulting in a 
similar average complexity. 

5.2. Delay and Complexity (Alg.2)

Fig. 4 shows the relationship between the average end-to-
end delay and the worst-case complexity in Alg.2 by varying 
the value of . For all the five trace files, the average 
end-to-end delay can be reduced at the expense of additional 
complexity. Among these files, profile 1 has zero packet 
loss in the network and relatively small jitter when 

compared to other four trace files, therefore, the benefit of 
increasing complexity on the delay is not apparent, since the 
average end-to-end delay is already very small. 

5.3 Cumulative Distribution Function of buffering delay                        

Fig. 5 shows the CDF of buffering delay for profile 6. It is a 
requirement in [7] that at least 90% of the buffering delay 
must be below the delay threshold (the red line). Profile 6 
has also zero network packet loss, but very large delay 
spikes (around 300 ms). It is shown that both Alg.2 and 
Alg.4 can fulfill the requirement.  Alg.1 can only reduce the 
play-out delay in silence, thus it cannot reduce the delay 
under the threshold and then is unable to fulfill the CDF 
requirement. All of these algorithms have a late loss rate 
lower than 1% which is in line with the requirements [7].  

6. CONCLUSION AND FUTURE WORK 

We have proposed a jitter buffer management taking the 
complexity information into account, and controlling the 
worst-case complexity under specified constraints. We show 
that it is possible to reduce complexity of the overall system 
while still fulfilling the requirements on jitter buffer 
management specified by 3GPP in [7].  

For future work, it is envisioned to use other 
complexity measurement tools instead of the wMOPS. 
Furthermore, in order to consider the overall perceived 
speech quality, a combination of this approach with a 
quality based jitter buffer management algorithm [3] is also 
a topic of investigation.  
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