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ABSTRACT

In this paper, we propose two block-based clustering and identi-
fication algorithms that contribute to robust estimation of autore-
gressive (AR) speech parameters in noisy environments. Motivated
by the fact that the evolution pattern of speech dynamics could be
an observable feature that are retained in a series of noisy obser-
vations, a dynamic state tracking scheme based on Kalman filter
is incorporated to utilize this additional trajectory information in
block-based AR codebook design. The proposed algorithm is de-
vised in a sense that AR blocks with similar clean line spectrum
frequency trajectories as well as noisy-to-clean mappings are clus-
tered offline and identified online. It is compared with conventional
vector quantization based approaches that directly minimize a distor-
tion between AR parameters. Through objective assessments based
on mean square error and log-spectral distance, it is demonstrated
that the proposed algorithm achieves significant improvement over
conventional methods in various conditions.

Index Terms— autoregressive model, vector quantization, clus-
tering, Kalman filter

1. INTRODUCTION

Autoregressive (AR) model of speech has been well explored in
various speech applications for its compact representation and its
frequency-domain interpretation. In speech enhancement, tech-
niques such as Wiener filtering and Kalman filtering attempt to
estimate clean AR parameters of speech from noisy observations in
different perspectives. In iterative Wiener filtering (IWF) such as
[5][6] , clean AR parameters are sequentially estimated from noisy
speech using maximum a posteriori (MAP) techniques. While in
Kalman filtering applications [2][4], speech and/or noise are mod-
eled as stochastic AR process, and AR parameters are represented
in state-space form to model the state transition between time sam-
ples. Parameter estimation and iterative update can be achieved by
expectation-maximization (EM) type algorithms [2]. One advantage
is that, as the order of AR parameters is much lower than that of its
corresponding time and frequency samples in each analysis frame,
the estimation is performed with reduced dimensions. However,
they generally suffer poor performance in adverse (e.g. low signal-
to-noise ratio (SNR) and/or non-stationary) environments, albeit
various constraints can be imposed on these estimators. It is be-
cause in such cases, without any prior information available in these
methods, it is extremely difficult to retrieve clean AR parameters in
noise-dominated and/or fast-varying observations. To address this
fundamental limitation, a codebook driven approach is employed in
[7] to estimate the clean AR parameters based on noisy observations
in a maximum likelihood (ML) sense. In this approach, clean speech
and noise AR parameters are offline trained and online identified by

searching and combining the entries in codebooks. Given that the
correct codebook entry is accessed, parameter estimation can be
substantially improved as prior information of clean speech is in-
corporated. However, the identification process also becomes fairly
difficult in adverse environments as very limited speech information
can be observed in noisy AR parameters and the noisy-to-clean map-
ping would be a nearly one-to-many mapping. In addition, without
inter-frame constraint, the identification is performed independently
on a frame basis. Hence fluctuation is observed in envelope spec-
tra constructed by codebook-derived AR parameters. Therefore,
to improve the frame-based codebook approach, it is desirable to
incorporate additional past information in codebook clustering and
identification.

In [1], a block concept is introduced, and series of line spec-
trum frequencies (LSFs) are adopted as a variant of AR codebook.
Subsequently, clean AR parameters are estimated through tracking
its temporal trajectories using Kalman filtering. This block code-
book approach is attractive for two reasons. First, temporal corre-
lation between adjacent clean frames is taken into account in the
codebook design. In doing so, various patterns of speech evolution
are clustered and stored as additional prior information. Second,
smoothed estimate of clean AR parameters of current frame is deter-
mined based on the entire block of observations. As a result, more
smooth trajectories and less fluctuation is observed in the enhanced
envelope spectrogram, as compared to that of frame-based codebook
estimation. In this paper, several problems of the clustering and iden-
tification strategies used in [1] are discussed, and two robust cluster-
ing and identification algorithms that contribute to better estimation
of clean AR parameters within the block codebook framework are
proposed accordingly. They are compared and evaluated in objec-
tive measures, and experimental results show the improvement of
the proposed algorithms over previous approaches.

The remainder of this paper is organized as follows. In Section
2, the original algorithm in [1] is briefly described and two algo-
rithms are proposed to improve the AR parameter estimation. In
Section 3, the performance of the proposed algorithms is evaluated.
Finally, conclusion is drawn in Section 4.

2. ALGORITHM DEVELOPMENT

It is shown in [1] that, owing to the long-term tracking scheme,
improved AR parameter estimation can be achieved with correctly
identified Kalman system parameters. Therefore, in the offline train-
ing stage, it is desirable to find affordable sets of Kalman system
parameters that best characterizes all the mappings between noisy
and clean LSFs and all the state transitions between consecutive
clean LSFs. While in online enhancement stage, the objective is to
identify the optimal set (by means of certain distortion measures) of
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pre-trained Kalman system parameters with only noisy observations
available.

In [1], during clustering, the averaged noisy LSF vector ȳ (cal-
culated from blocks of normalized autocorrelation coefficients) is
defined as the block feature representation. Split vector quantization
(VQ) are performed on ȳ, and the distortion measure is defined as
the log-spectral distance (LSD) as

d(w̄, ŵj) = (w̄ − ŵj)
T (w̄ − ŵj) (1)

where w̄ and ŵj are log magnitude spectra constructed by ȳ and
current jth codeword LSF vector ŷj , respectively. During each it-
eration, associated blocks of parallel (both noisy and clean) LSFs
(denoted as Y = [y1, . . . ,yK ] and X = [x1, . . . ,xK ], where P is
the linear prediction order, and K is the number of frames per block)
are regrouped based on the minimum distance rule as

jmin = argmin
j

{d(w̄, ŵj)} (2)

Assume that a total of L LSF blocks are grouped into the jth cluster.
The centroid ŵj is calculated by simply averaging out all ȳi within
the cluster as

ŷj =

L∑
i=1

ȳi/L; (3)

One iteratively update (1)-(3) until convergence criteria meets. A to-
tal of J clusters are formed and their associated parallel (both noisy
and clean) LSF blocks are applied in ML learning. Consequently,
J centroids of averaged LSF vectors and their corresponding sets of
Kalman system parameters Θ = {F,H,Q, R, x̂1,Σ1} (where F

is the state transition matrix, H is the linear mapping matrix for state
and observation, Q and R are their prediction error covariances, x̂1

and Σ1 are the initial state and its error covariance, respectively) are
stored as a priori information in the codebook.

However, there are several limitations of the above algorithm.
First, the implementation of LSD is computationally expensive. Sec-
ond, intuitively, the centroid should be derived by minimizing the
distortion measure defined in (1), but it is difficult to compute the
LSF centroid from the LSD measure. More importantly, the trajec-
tory information within noisy blocks might already be smoothed out
during clustering using this averaged feature representation. For in-
stance, two blocks of LSFs with rising and falling formant frequency
trajectories might be misclassified in a single cluster as the averaged
LSFs are close, despite that their true state transition patterns are en-
tirely different. As a consequence, it will deteriorate the offline ML
learning, and subsequently the online estimation process.

2.1. Block-based Matrix Quantization (MQ) Clustering
(Algorithm A)

The most intuitive way to tackle the above problems is to extend the
VQ to a MQ so that all noisy vectors within a block contribute to the
total distortion measure. In addition, as the computation of distortion
has been raised by a factor of K, computational affordable distortion
measure is desired to replace the original LSD measure. Theoretical
analysis of linear predictive coding (LPC) parameters in [3] shows
that LSD can be reformulated as an approximate quadratic measure
between LSFs as

d(Y, Ŷj) =

K∑
k=1

(yk − ŷj,k)
T
Wk(yk − ŷj,k) (4)

where Wk = JT
kRkJk is the sensitivity matrix with Jk being the

Jacobian matrix transforming LSFs to direct LPC coefficients and

Rk being the autocorrelation matrix. There are two reasons to adopt
the LSF form rather than the direct LPC form. First, diagonalized
sensitivity matrix indicates scale quantization of LSFs does not af-
fect each other, and hence results in less quantization error. Sec-
ond, the weighted mean square error (WMSE) is easy to compute
compared to general quadratic measure. As a result, LSF blocks
are regrouped based on the minimum distance rule for the distortion
measure in 4.

For a cluster withL blocks, the block centroid Ŷ = [ŷ1, . . . , ŷK ]
is then obtained by sequentially minimizing

L∑
i=1

(yi,k − ŷk)
T
Wi,k(yi,k − ŷk) (5)

which results in

ŷk = (

L∑
i=1

Wi,k)
−1(

L∑
i=1

Wi,kyi,k) (6)

In this case, one iteratively update (4)-(6) and subsequently store a
total of J block centroids Ŷ and corresponding Kalman system pa-
rameters Θ. This algorithm can be regarded as a straightforward ex-
tension of the algorithm used in [1]. However, the physical meaning
of this algorithm accounts for its distinct advantage over the original
one. It sequentially compares all the frames (including the trajectory
information) within the block in both clustering and identification,
so noisy blocks will be grouped together as long as all their frames
match well. As such, misclassifications caused by the averaging ef-
fect are avoided. It is also worth mentioning that the additional com-
putational cost required for a online block codebook searching can
be removed as the distortion for previous frames in this block has
been calculated in previous blocks and hence can be reused with a
memory system.

2.2. Block-based Clustering with Dynamic State Tracking
(Algorithm B)

In the previous algorithm, noisy LSF blocks are clustered based on
the weighted distance measured directly from the LSF matrices. The
corresponding Kalman system parameters are derived based on the
intuition that similar (in WMSE sense) noisy LSF matrices lead sim-
ilar noisy-to-clean mappings and also similar underlying state tran-
sitions. However, due to the fast-varying nature of both speech and
noise, this statement is not always true. In this subsection, a hybrid
split MQ and EM-type algorithm is proposed to utilize the feedback
of Kalman filter output in iterative clustering. In the first stage of the
proposed algorithm, noisy block centroid of the entire training set
is calculated using (6). A small offset is then added to split it into
two centroids. Parallel blocks are grouped into either cluster based
on the rule in (4). The corresponding Kalman system parameters are
learned and attached to each cluster. In the next stage, an EM-type
algorithm that minimizes the distortion between true clean LSFs and
the output of Kalman filtering is employed. In the E-step, for each
noisy observation block Y in the training set, the expected value of
current clean LSF estimate x̃j in the jth codebook entry is obtained
by running a Kalman smoother for each set of system parameters Θi

j

(at ith iteration), which is given by

x̃j = f
Θi

j
(Y) (7)

where f denotes the Kalman smoother function with a set of recur-
sion equations. The regrouping of parallel training data X and Y
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are achieved by applying the minimum distance rule on the distor-
tion measure between true clean LSF vector x (last frame in current
block) and the smoothed estimate x̃j , as defined by

d(x, x̃j) = (x− x̃j)
T (x− x̃j) (8)

The M-step is same as the ML estimation proposed in [1]. In doing
so, new sets of Kalman system parameters Θi+1

j are obtained by
minimizing the total negative log-likelihood of parallel LSF blocks
inside the jth cluster as

Θ
i+1

j = g(Xj,Yj) (9)

where g denotes the ML estimator used in [1]. One performs (7)-
(9) to iteratively estimate sets of Kalman system parameters Θ that
better characterizes the noisy-to-clean mapping as well as the state
transition of training blocks. The EM algorithm terminates when the
total distortion Di for all J clusters in (8) at ith iteration does not
vary much during consecutive iterations. The convergence criterion
is defined as

Di −Di−1

Di
< ξ (10)

where ξ is the pre-defined tolerance and

Di =
J∑

j=1

d(x, x̃j)
i (11)

The noisy block centroids are recomputed using regrouped data.
Each block centroid is further split into two and the EM process
is applied again to optimize Θ for current level. The splitting stops
when the desired number of entries is reached. Implementation pro-
cedure of the proposed algorithm is described in Table 1.

Table 1: The proposed Algorithm B for block-based clustering

Initial condition: J = 1, parallel training set X and Y

While (J < Max Codebook Size )
1. Find block centroids Ŷ{1,...,J} using (6)
2. Split the centroids by adding small offsets J = 2J
3. Learn initial Kalman system parameters Θ0

{1,...,J} using (9)
While (Fractional change of D < ξ )

4. Obtain smoothed estimate x̃{1,...,J} with Θi using (7)
5. Regroup parallel blocks using (8)
6. Learn new Θi+1

{1,...,J} using (9)
7. Compute the total distortion D using (11)

End
End

In the proposed clustering algorithm, optimal sets of Kalman
system parameters are obtained in a sense that the MSE error be-
tween the desired clean LSF vector and the output of Kalman filter
is minimized. The convergence behavior of this algorithm is shown
in Fig.1. Fig.1(a) plots the averaged MSE distortion for each LSF
coefficient in radians over EM iterations. While Fig.1(b) plots the
percentage of membership jump during regroupings. It is evaluated
in (SNR=10dB) white noise environments. J is the codebook size.
The initial distortion error is estimated by Algorithm A. This algo-
rithm converges as the total distortion and percentage of membership
jumps monotonically decreases during each iteration. It is observed
that, with sufficient number of codebook entries employed, signifi-
cant improvement over MQ clustering (Algorithm A) in AR estima-
tion is achieved. In addition, the large performance gain observed

in the first iteration demonstrates the effectiveness of employment of
(8) instead of (4) as the distortion measure.

However, note that the distortion measure in (8) is not accessible
in online enhancement stage as true clean LSF vector is missing.
Hence, in practice, an approximate distortion measure is defined and
adopted online as

d(y,Hj x̃j) = (y −Hj x̃j)
T (y −Hjx̃j) (12)

The effect of this mismatch in clustering and identification are eval-
uated with different SNR settings in the next section. As a conse-
quence, for each analysis block in online adaptation, a full codebook
search is performed by applying Kalman filtering on noisy obser-
vations with each set of optimized system parameters. The entry
is identified by finding the index with minimum distance defined in
(12).

3. EXPERIMENTAL RESULTS

The proposed Algorithm A (MQ) and Algorithm B (MQ + EM) are
compared with the original one (VQ) proposed in [1]. The distortion
between noisy and true clean features is adopted as the benchmarks.
The experiment settings are aligned with those in [1]. Clean speech
and noise are taken from IEEE sentence database and NOISEX-92
database, respectively. Clean speech is manually corrupted by addi-
tive noise at SNR level of 0, 5, and 10 dB. The total length of training
data is approximately 40 minutes. Separate testing data (different
from training, approximately 5 minutes) are adopted in performance
assessments. Two types of noise, namely, white Gaussian noise and
car interior noise are adopted. Both block shift and frame shift are
8ms. The frame size and the length of Fourier transform are 256.
The order of LPC analysis is 18. The number of frames per block is
13.

The MSE results of the proposed algorithms with various code-
book size and SNR settings in white noise environments are illus-
trated in Fig.2. It is observed that the performance gain of Algorithm
A over the original is relatively constant and small in various con-
ditions. The gap is relatively large in low SNR conditions, which
indicates that the trajectory information is more important for iden-
tification in adverse conditions. The performance gain of Algorithm
B grows significantly as the codebook size increases. The theoretical
upper bound of Algorithm B (assume (8) is available in identifica-
tion) is plotted in dashed line while the achievable (as (12) is used
in identification) is plotted in solid line. It is noticed that the gap
between the two reduces as the SNR increases. It indicates that this
identification mismatch is more severe in low SNR conditions. Over-
all speaking, realizable Algorithm B still achieves significant im-
provement over VQ/MQ-based algorithms in various conditions. To
correlate the improvement in AR parameters with the improvement
in spectral magnitude, the LSD measure is conducted as it compares
the difference between log-scale magnitude spectra of noisy and en-
hanced speech. It is defined as

LSD(S(ω), Ŝ(ω)) =

√√√√ 1

2π

∫ π

−π

[
10 log10

S(ω)

Ŝ(ω)

]2

dω (13)

where S(ω) and Ŝ(ω) represent the spectral shape (with unity gain)
in this evaluation. The LSD improvement over the distortion be-
tween noisy and clean pairs are summarized in Table 2. It is ob-
served that performance gain in spectral envelope is achieved using
proposed algorithms in both noisy environments with various SNR
settings. The LSD results are consistent with the MSE results in
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Fig. 1: Convergence analysis for Algorithm B
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Fig. 2: Comparison of various algorithms in white noise environments with different SNR settings

LSFs, and it can be concluded that Algorithm B performs best and
Algorithm A performs a bit better than the original averaged VQ
approach.

Table 2: Objective evaluation results of various block-based algo-
rithms

LSD Improvement(in dB)
Noise Input SNR
Type Method 0dB 5dB 10dB

Gaussian Original(VQ) 8.54 7.56 6.89
White Algorithm A(MQ) 8.87 7.81 7.02
Noise Algorithm B(MQ+EM) 10.85 9.57 8.64
Car Original(VQ) 7.72 6.97 6.54

Interior Algorithm A(MQ) 8.08 7.65 6.93
Noise Algorithm B(MQ+EM) 9.21 8.54 8.01

4. CONCLUSION

Two block-based algorithms are proposed to improve the AR param-
eter estimation by incorporating additional trajectory information in
memory-based AR codebook design. The enhanced estimates can
be used in any speech applications that require clean AR parameter
estimation. The effectiveness of the proposed algorithms is demon-
strated through objective measures such as MSE and LSD.
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