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ABSTRACT

In this paper, an attempt is made to compare and analyze the
various waveform fractal dimension techniques for voice pathology
classification. Three methods of estimating the fractal dimension
directly from the time-domain waveform have been compared. The
methods used are Katz algorithm, Higuchi algorithm and the Hurst
exponent calculated using the rescaled range (R/S) analysis.
Furthermore, the effects of the window size, the base waveform
used and score-level fusion with Mel frequency cepstral
coefficients (MFCC) has also been evaluated. The features have
been extracted from two different base waveforms, the speech
signal and the Teager energy operator (TEO) phase of the speech
signal. Experiments have been carried out on a subset of the
Massachusetts Eye and Ear Infirmary (MEEI) database and
classifier used is a 2" order polynomial classifier. A classification
accuracy of 97.54 % was achieved on score-level fusion, an
increase in performance by about 2 % as compared to MFCC
alone.

Index Terms— Fractal dimension, Voice Pathology, Hurst
exponent, Higuchi algorithm, Polynomial classifier.

1. INTRODUCTION

Pathologically affected voices are characterized by their increased
nonlinearity and turbulent nature. This study investigates the
effectiveness of using a nonlinear feature, viz.,, the waveform
fractal dimension as a correlate of the nonlinearity and turbulent
nature of a patient’s speech signal. The main aim in investigating
such features is to develop a robust and accurate method for
detecting pathologies affecting the vocal folds and the vocal tract
in a convenient, accurate and noninvasive manner. The voice
disorders can be broadly classified as functional and organic
disorders. Organic disorders are caused because of some physical
malfunction in the voice production mechanism, while functional
disorders results from misuse of vocal production mechanism [1].
The presence of these pathologies modifies the speech signal by
introducing noise transients, due to asymmetric vibration and
incomplete closure of vocal folds. Hence, the perceived
pathologically affected voice sounds hoarse and breathy.
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The Teager energy operator (TEO), proposed by the Teagers
[2], characterizes the nonlinearity in the vocal production
mechanism by accounting for the nonlinear sources of voice
production mechanism, viz.,, the vortices caused due to the
turbulent and nonlaminar nature of the airflow. TEO phase is
obtained as the cosine of the analytic phase of this TEO profile [3].
Fig. 1 illustrates the process of obtaining the analytic phase of the
TEO profile of a speech signal x(n). The speech signal and the
corresponding TEO phase profiles for a normal speaker and a
speaker suffering from vocal folds polyps has been plotted in Fig.
2. The differences in the structure, periodicity and roughness of the
waveforms (both speech and TEO phase) can be observed on
comparing Panel 1 corresponding to the normal speech and Panel
2, corresponding to the speaker suffering from vocal fold polyps.
By comparing the speech signal and TEO phase of the speaker
suffering from polyps, it can be seen that the TEO phase tends to
amplify the transients present in the speech signals. This may
presumably be because of the ability of the TEO phase to capture
the instantaneous phase changes in the speech waveform [3]. Since
it is known that the fractal dimension quantifies the roughness of a
surface or in other words the transient behavior of the waveform
[4], in this work, the fractal dimension (FD) extracted from two
base waveforms, the speech signal and the TEO phase of speech
has been analyzed.
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Fig 1. Block diagram indicating the intermediate steps in TEO
phase computation.

The FD measures the dimension of a geometric object, which
can be a non-integer number. The greater the FD of an object, the
greater is the roughness or the irregularity of the surface of the
object, which implies a greater presence of transient behavior. This
FD can either be measured by assuming the waveform itself as the
geometric object or it can be obtained from the phase space, by
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measuring the FD of the attractor in the phase space. It has been
used previously on various biomedical signals like
electroencephalogram (EEG), electrocardiogram (ECG), speech,

tc., because of the inherent nonlinearity present in biological
control systems [4]-[5]. In the application of detecting pathological
voices, methods using FD derived from the phase space have been
used [5]. In this paper, we investigate three well known algorithms
to compute the FD of a waveform, viz., Katz’s algorithm,
Higuchi’s algorithm and FD obtained using the Hurst exponent,
which is calculated using the rescaled range analysis (R/S). These
time-domain FD extracting methods are computationally more
efficient and much simpler to implement than the phase space
methods.

The paper is organized as follows. Section II gives the details
of the algorithms used to calculate the FD. Section III describes the
methodology and analyses the experimental results obtained.
Lastly, Section IV, summarizes our conclusions and lists our future
research directions.
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Fig 2. Plots of the speech waveforms for (a) a normal speaker and

(c) speaker suffering from vocal folds polyps and corresponding
TEO phase for (b) normal (d) polyps.
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2. WAVEFORM FRACTAL DIMENSION
ALGORITHMS

This section describes the three methods used to estimate the FD
and provides a physical interpretation of each of the algorithms.

2.1. Katz Algorithm

This algorithm describes the FD, denoted as D as a ratio of the
length of the curve L, calculated as the sum of the distances
between two successive points, divided by the maximum distance d
of any point in the frame under consideration from the first point.
Thus, it can be interpreted as the ratio of the total length of the
curve as compared to the straight line corresponding to the
maximum linear Euclidean distance from the first point. Hence, it
measures the extra length of the curve as compared to the
maximum linear distance and thus could be viewed as a measure of
the roughness of the waveform, since the more rough a curve the
greater would be its length as compared to a straight line between
the two furthest points on the curve. Moreover, since the distances
between successive points would depend on the sampling
frequency, a scale factor @ , is used which is the average of the
distances between two successive points. The fractal dimension D
is thus defined as:

s 1
log,y(d/a) M
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where L is the total length of the waveform, d is the maximum
distance between the first point and any other point on the
waveform and @ is the scale factor.

2.2. Higuchi Algorithm

The FD using Higuchi algorithm is calculated as in [4]. It consists
of forming new waveforms by iteratively selecting samples
differing in their starting point m and their delay factor &. We first
select a maximum delay factor, say k.. So for every delay factor

. . . . k
k, where k is varied from / to k,,,, we form k new time series, X, ,

where the starting point of the series is defined by m and samples
at every k samples are selected to form the new waveform, i.c.,

= {x(m),x(m + k),x(m + 2k).x(m + | (N - m)/k |k}, ()
where m the starting point for each new waveform is varied from /
to k , k is the delay factor between the samples and N is the
window size. Then the length of each waveform is calculated as the
sum of the distances between two consecutive points, i.c.,

L(N=m)/k ]
E:k(mﬁdk)—xhn+(i—Lk)kN—J)

L(mk)=—1=!
[(N=m)/k |k
where L( N -m)/ kJ k/(N-1) is the normalization factor and N is the

window length. The lengths for the same delay factor, £ are then
averaged as follows,

L(k)=Y L(mk), 4)

where k is varied from / to k,,,, and L(k) is the averaged length for
a particular delay factor &. We would expect that for very smooth
and regular waveforms, as the delay factor is increased, the length
of the waveform would decrease proportionally since increasing
the delay factor between samples, could be viewed as smoothening
the waveform, and hence we would expect the length to decrease
proportionally. However, if it is an irregular waveform, containing
a lot of transients, this decrease in length will be very much, since
by neglecting samples in between, we are bypassing many of the
transients in between and as a result with increasing k, we expect a
very steep decrease in L(k). The FD is thus calculated as the slope
of the least squares linear best fit to the graph plotted between
In(L(k)) and In(1/k). So greater the slope, greater is the number of
transients in the waveform and hence greater is its FD.

. )

2.3. Hurst Exponent

The Hurst exponent has mostly been used in analysis of financial
time series in order to predict the trend [6]. In this paper, the Hurst
exponent is calculated using the rescaled range analysis (R/S). At
each point in a region of size n, the cumulative deviation upto that
point is calculated and stored in a vector X(z). The range R, for that
region is calculated as the difference between the maximum and
minimum value of X(1), i.e.,

R, = {max( X (t)—min( X(t)}, )

where, n is the number of samples in the region under
consideration. The denominator S, is the standard deviation of the
region of size n under consideration, i.e.,



(©)

where x(¢) are the samples of the frame of the waveform under
consideration and x is the mean of the samples in that frame . The
R/S value is then averaged over all the R/S values for a given
region size. In this way by iteratively dividing the dataset by a
factor of 2, till it reaches a very small region size, (in our
experiments we considered the smallest region of 16 samples) the
R/S values were obtained and a graph was plotted between
log>(R/S) value vs. the log,(n). The slope of this line is the estimate
of the Hurst exponent (H). An H value of 0.5 indicates a total
random walk. A relatively larger value of 0.5 <H<I, indicates
persistent behavior, i.e., if a waveform is in an increasing trend it
will remain in an increasing trend or vice-versa. Whereas, a lesser
value, i.e.,, 0 < H < (0.5 indicates anti-persistent behavior, i.c., a
waveform in an increasing trend will most likely decrease or vice-
versa. What this implies is that for a smooth and regular waveform,
we expect there to be a proportional increase in R/S value with an
increase in n to give a value of H as very close to 1. This is
because, we expect that for smooth waveforms, as the region size n
increases, the range R also increases since there would be regions
in an up trend where the cumulative deviation would be adding up
to a large positive number and regions in a down trend where the
cumulative deviation would be adding up to a large negative
number thus yielding a large R value as compared to the total
deviation S of the region. This may not be true in the case of
irregular waveforms since the R/S value may not necessarily
increase proportionally with the increase in n due to the increased
irregularities yielding a lower R/S value. The fractal dimension is
then calculated from the Hurst exponent using the following
relation [6]:
D=2-H. 7

Thus, it can be said that the Hurst exponent measures the short-
term predictability of a signal.

3. EXPERIMENTS

This section gives the details of the feature extraction method and
the database and analyses the results obtained.

3.1. Data and Methods

In this work, for each algorithm, the effect of three basic criteria
were explored, namely, window size, base waveform and
complementary information provided on score-level fusion with
state-of-the-art Mel frequency cepstral coefficients (MFCC). The
database used for the experiments was the commercially available
Massachusetts Eye and Ear Infirmary (MEEI) database [7]. In this
study, a subset of this database consisting of 53 normal speakers
forming the control group and 173 speakers suffering from various
pathologies according to the speech corpus design given in [8] was
considered for classification. All the samples were downsampled to
25 kHz sampling frequency. For feature extraction, the base
waveform, i.e., speech (Sp) or TEO phase (TP), was first blocked
into frames of N samples with 50 % overlap. In this work, three
values of N were considered, N=256, 512 and 1024 samples. Each
frame was then multiplied with a Hamming window of length N
and the short-term FD was extracted per frame. This FD vector was
then fed to a discriminatively trained 2" order polynomial
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classifier [9] to generate the true and false scores, using which the
detection error tradeoff (DET) curves were plotted. The equal error
rate (EER) obtained from these DET curves and the accuracy (Acc
%) were used as performance measures. These values have been
shown in Table 1. Score-level fusion was carried out with MFCC
and FD. For MFCC computation, each frame was blocked into
frames of 256 samples with 50 % overlap, and MFCC computation
was carried out according to [10], with 12 MFCC coefficients
extracted per frame. These features were then given to a
polynomial classifier to generate the true and false scores. The
scores obtained for MFCC were then fused in equal weights (i.e.,
for w=0.5), with the scores of the best performing feature in each
algorithm (highlighted in Table 1) according to (8).

Y =wY +(1-w)Y, ®)

/ MFCC

Here, x represents each of the best performing FD features
highlighted in Table 1 and Yjzcc, Yy and Yy are matching scores
for MFCC, FD and their score-level fusion, respectively. These
fusion results have been shown in Table 2. A four-fold cross-
validation scheme was used repeated 12 times, giving a total of 48
trials so as to produce a smooth DET curve and make the
classification independent of the training and testing set. For each
trial, 75 % of the samples from each class (selected randomly) were
used for training and the rest 25 % were used for testing.

Table 1. EER (%) and accuracy (Acc (%)) values obtained using
various waveform fractal dimension algorithms for varying
window size and base waveform.

Algorithm/ Base Frame | Acc EER
Feature Waveform Size (%) (%)
MFCC Speech 256 95.65 | 4.35
Katz Speech 1024 66.22 | 36.27
Katz Speech 512° 71.65 | 32.63
Katz Speech 256 68.78 | 34.11
Katz TEO Phase 1024 82.18 | 17.82
Katz TEO Phase 512 82.51 | 17.48
Katz TEO Phase | 256 82.18 | 17.82
Higuchi Speech 1024 59.38 | 40.63
Higuchi Speech 512 59.45 | 40.55
Higuchi Speech 256 59.60 | 40.40
Higuchi TEO Phase 1024 80.92 | 19.08
Higuchi TEO Phase 512 81.40 | 18.60
Higuchi TEO Phase | 256 81.62 | 18.38
Hurst Exp Speech 1024 87.72 | 12.28
Hurst Exp Speech 512 87.46 | 12.54
Hurst Exp Speech 256 85.52 | 14.47
Hurst Exp TEO Phase 1024 75.26 | 24.74
Hurst Exp TEO Phase 512 73.81 | 26.19
Hurst Exp TEO Phase 256 75.52 | 24.48

Table 2. EER(%) and accuracy (Acc(%) values of score-level
fusion of the best performing features with MFCC.

Feature Base Frame | Acc EER
signal | Size (%) (%)
FD (Hurst) + MFCC Sp 1024 97.54 | 2.45
FD (Higuchi) + MFCC | TP 256 96.39 | 3.61
FD (Katz) +MFCC TP 512 9591 | 4.09




3.2. Result Analysis

The results of the experiments carried out have been shown in
Tables 1 and 2. The observations from these tables are as follows.

- Base waveforms: It can be observed that two out of the three
algorithms considered give superior performance for FD extracted
from TEO phase as compared to the speech waveform across all
window sizes. This maybe due to the fact that the different
algorithms consider different parameters as a measure of the FD.
For instance, the Katz and Higuchi algorithms, consider the extra
length of the curve as a measure of the FD, while the FD obtained
using the Hurst exponent considers the range of the cumulative
deviations in a given waveform as a measure of the FD.

-Window size: As such, the difference in the accuracy or the EER
with a change in window size is not very significant. In the Katz
algorithm, it can be observed from Table 1 that for both the base
waveforms, the window size of 512 samples seems to be the most
optimum. While in case of the Higuchi algorithm, we see that the
accuracy and the window size are inversely proportional to each
other, i.e., as the window size is decreased, the accuracy increases.
Finally, considering the Hurst exponent method, we see that for the
speech waveform as the base waveform, there is a direct
relationship between the accuracy and window size, but for the
TEO phase as the base waveform, there is no trend as such, since a
window size of 1024 and 256 give comparable results. However,
as such we can conclude that for Hurst exponent method, longer
windows generally tend to give a higher accuracy.
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Fig 3. DET plot showing the complementary nature of FD
extracted using the Hurst exponent from speech signal for N=1024.
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-Score-level Fusion: The scores of the best feature from each
algorithm were fused with the scores of MFCC to investigate
whether the FD gave some complementary information. As can be
seen from Table 2, the score-level fusion of the short-term FD with
MFCC does give some complementary information in all cases
since in each case the EER is lesser than that of MFCC alone
which is 4.35% and the accuracy is greater than that of MFCC
alone viz.,, 95.65%. Fig. 3 shows the DET plot for MFCC, FD
extracted using Hurst exponent and their score-level fusion. It can
be seen that in the DET plot shown in Fig. 3, the score-level fusion
performs significantly better at all points on the DET curve and it
can be observed that there is a significant decrease in the EER by
almost 1.9% and an increase in accuracy by almost 2.5% as
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compared to that of MFCC alone. Thus, we can conclude that the
FD does provide certain amount of complementary information
and can be used to increase the classification accuracy for voice
pathology classification.

4. SUMMARY AND CONCLUSIONS

In this paper, we investigated three algorithms for computing the
FD directly from the waveform in the time-domain. It was
observed that, the performance of the base waveform depends on
the quantity that the algorithm considers to be a measure of the FD.
As per our results, it was concluded that if this quantity is the
length of the curve, the TEO phase performs better, while if it is
the cumulative deviation, the speech waveform performs better.
Furthermore, it was observed that the optimum window size
depends upon the FD extracting algorithm. On score-level fusion
with state-of-the-art MFCC feature-set, we found that the FD did
provide some complementary information and decreased the EER
by almost 2 %. Thus, we can conclude that FD derived directly
from the waveform does increase the accuracy of the system when
fused with MFCC, without much increase in the computational
complexity. The main limitation of using the Katz algorithm is its
dependence on the sampling frequency. Hence, in our future
studies, we would like to study the effect of the sampling
frequency in the FD computation. In addition, in this work for the
Higuchi algorithm, we used a fixed commonly used value for the
maximum delay factor %, = 8, hence, we would like to investigate
techniques to select an optimum £,,,, to improve the classification
performance.
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