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ABSTRACT

This study introduces an approach for linear predictive spec-
trum analysis based on emphasizing selected time-domain
properties in the analyzed signal in combination with a stabi-
lization operation. A stable weighted linear predictive method
based on a novel autocorrelation-based weighting scheme is
described and its spectral properties are demonstrated. The
robustness of the proposed method is compared with conven-
tional techniques in terms of an Euclidean MFCC distortion
measure in different additive noise conditions. In the ex-
perimental evaluation, the novel speech analysis technique
outperforms the other evaluated methods.

Index Terms— linear prediction, spectrum analysis

1. INTRODUCTION

Short-time spectrum modeling is a central task in speech and
audio processing applications. In automatic recognition ap-
plications, both in speech and speaker recognition, the short-
time magnitude spectrum is used as a basis for the most preva-
lent feature representations, such as mel frequency cepstral
coefficients (MFCCs) [1]. Many studies related to recogni-
tion tasks have addressed the usefulness of linear predictive
models, e.g., [3] [2] [4]. These models depict the magnitude
spectrum envelope of speech and particularly its local peaks,
the formants, which arguably comprise the primary discrim-
inative information in most speech-related recognition prob-
lems.

Recently, temporally weighted linear prediction [5] with
its many variants has been applied (by the present authors) to
text independent speaker verification [4] [6] and large vocab-
ulary continuous speech recognition [2] [7] [8] in mismatched
recognition conditions. In weighted linear prediction, a tem-
poral weighting function is utilized in the filter optimization
in order to emphasize the contribution of those speech sam-
ples that contain the most relevant information from the point
of view of the underlying modeling problem. The exact na-
ture of temporal weighting depends on the chosen weighting
scheme. For example, weighting can be applied to focus on
the glottal closed phase, thus obtaining linear predictive mod-
els with more prominent formant structures. In the mentioned
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studies, the linear predictive methods in general have outper-
formed basic Fourier spectrum modeling, while the tempo-
rally weighted methods have succeeded to further improve
the robustness with respect to mismatch due to additive noise
corruption and channel variation.

The present study proposes a new weighted linear pre-
dictive spectrum analysis method and, using an objective
distortion measure, compares it against previous methods in
terms of robustness against additive noise. The new method
is based on our earlier work [6] but it introduces a novel ef-
ficient weighting scheme and is guaranteed to produce stable
all-pole models. The stability property makes it suitable also
for coding and synthesis applications. From a more gen-
eral viewpoint, the present study highlights an approach for
creating new, stable lag-weighted linear predictive analysis
methods with arbitrary focus on the underlying information.

2. LINEAR PREDICTIVE SPECTRUM ESTIMATION

2.1. Linear prediction (LP)

Linear prediction (LP) is a well-known method for modeling
the short-time spectrum envelope of speech and audio signals
by an all-pole model H(z) = 1/(1 − ∑p

k=1 akz−k) [9]. It
is assumed that each speech sample can be predicted as a lin-
ear combination of p previous samples, ŝn =

∑p

k=1 aksn−k,
where {sn} are the samples of the speech signal in a given
short-term frame and {ak} are the predictor coefficients. To
obtain the coefficients, conventional LP minimizes the energy
of the prediction error signal en = sn − ∑p

k=1 aksn−k by
setting the partial derivatives of ELP =

∑
n e2

n with respect
to each coefficient ak to zero. This gives the normal equa-
tions

∑p

k=1 ak

∑
n sn−ksn−j =

∑
n snsn−j , 1 ≤ j ≤ p, for

solving the coefficients {ak}. The range of summation of n is
typically chosen to correspond to the autocorrelation method,
in which the energy is minimized over a theoretically infinite
interval, but sn is considered to be zero outside the actual
analysis window. The LP synthesis model H(z) given by the
autocorrelation method is guaranteed to be stable, meaning
that the roots of the denominator polynomial 1−∑p

k=1 akz−k

lie inside the unit circle [9].
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2.2. Weighted linear prediction (WLP)

Weighted linear prediction (WLP) is a generalization of LP,
originally introduced by Ma et al. [5]. In WLP, the prediction
coefficients {bk} are obtained by minimization of a quantity
which can be termed the weighted prediction error energy
EWLP =

∑
n e2

nWn =
∑

n(sn − ∑p

k=1 bksn−k)2Wn, in
which Wn denotes the temporal weighting function. The
weighting function for WLP is usually chosen as the short-
time energy of the signal in the delay line, Wn =

∑p

i=1 s2
n−i.

In the case of stationary background noise, temporal weight-
ing enables emphasizing the contribution of high-energy
samples in the computation of the spectral model. These
high-energy samples are likely to have a better local signal-
to-noise ratio (SNR) than low-energy segments, thus result-
ing in more robust models. The WLP normal equations are∑p

k=1 bk

∑
n Wnsn−ksn−j =

∑
n Wnsnsn−j , 1 ≤ j ≤

p. From these equations, it is easy to see that by simple
substitution of Wn constant across all n, the conventional LP
equations are obtained as a special case. The weighting is
only meaningful for Wn that varies with n. When compared
to conventional spectral modeling methods such as FFT and
LP, WLP using STE weighting has been recently shown to
improve robustness with respect to additive noise in the fea-
ture extraction stages of both large vocabulary continuous
speech recognition (LVCSR) [2] and speaker verification [4].

2.3. Stabilized extended weighted linear prediction (SXLP)

2.3.1. General formulation

In a further generalization of LP analysis, the quantity to be
minimized for solving the prediction coefficients {ck} can be
expressed as

EXLP =
∑

n

(snZn,0 −
p∑

k=1

cksn−kZn,k)2. (1)

WLP is obtained as a special case when Zn,j =
√

Wn and
LP is obtained when Zn,j = d, with d �= 0, for all n and
j. However, if Zn,i = Zn,j does not hold for all n, i and
j, the result is a different LP analysis method, in which each
lagged sample (with lag j) at each time instant n (i.e., each
lag at each prediction) is weighted separately using weight
Zn,j . The formulation, referred to as eXtended weighted Lin-
ear Prediction (XLP), allows temporal weighting on a finer
time scale than WLP. It was first evaluated in the context of
speaker verification [6] and subsequently in LVCSR [8].

The minimization of the error energy in Eq. 1 gives rise
to the XLP normal equations

p∑

k=1

ck

∑

n

Zn,ksn−kZn,jsn−j =
∑

n

Zn,0snZn,jsn−j , (2)

1 ≤ j ≤ p.

2.3.2. Weighting scheme

There are theoretically innumerable ways to determine the
weights for XLP. A scheme based on absolute values of the
samples was used with the first applications of XLP [6] [8]. In
the present study, a new scheme, based on instantaneous au-
tocorrelation structure, is described. When used together with
the stabilization operation described in a subsequent section,
it is outperforming the previous formulation.

The first step in the weight computation is to determine

Yn,j =
snsn−j

1
min(p+1,n+1)

∑p

k=0 s2
n−k

, 0 ≤ j ≤ p, (3)

with sn = 0 for n < 0, such that (Yn,0, Yn,1, . . . , Yn,p)
T

will be a vector depicting the normalized “instantaneous au-
tocorrelation” at time n. The values Yn,j are filtered along
the n dimension by a highpass FIR filter 1 − 0.99z−1. Next,
the filtered values are replaced by their absolute values. Fi-
nally, the absolute values are filtered along the n dimension
by a lowpass IIR filter (1/p)/(1 − ((p − 1)/p)z−1) to yield
the weights Zn,j . The main motivation is to emphasize, at
each time instant, the lags that are associated with formant-
related autocorrelation structure that is persisting for even a
short time (according to the lowpass filtering), regardless of
signal energy (because the autocorrelation is normalized).

2.3.3. Stabilization

Unlike autocorrelation LP, but similarly to WLP, XLP is not
guaranteed to produce a stable filter. However, filter stability
is required at least in coding and synthesis applications. The
stabilization technique described here was originally devel-
oped and proven correct by Magi [3] for the special case in
which Zn,j =

√
Wn, i.e., for the stabilization of WLP, giv-

ing rise to an analysis method known as stabilized weighted
linear prediction (SWLP). SWLP has been successfully used
to tackle noise robustness issues in automatic speech recog-
nition [3] [7] and speaker recognition [4]. By applying the
same stabilization operation to the general case of XLP, in
which there are no mutual constraints on the weights Zn,j ,
the SXLP method is obtained [6].

Once the weights Zn,j have been determined, they are re-
placed with Z ′

n,j = max(Zn,j, Zn−1,j−1), where Zn,j = 0
for j < 0. This yields a stabilized model.

Figure 1 illustrates the unstabilized and stabilized weight
matrices (Zn,j and Z ′

n,j , respectively) for a voiced frame.

2.4. Spectral properties

Figures 2 and 3 show short-time spectra over two utterances
as obtained by four methods: LP, WLP, XLP and SXLP. It can
be noted that WLP, which with its usual weighting scheme
focuses on the glottal closed phase, produces prominent for-
mants. The formants produced by XLP (using the weighting
scheme as detailed in Section 2.3.2) are even more prominent
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Fig. 1. Upper panel: One frame of a 16 kHz male vowel /a/.
Middle panel: XLP weighting matrix (Zn,j) (unstabilized).
Lower panel: SXLP weighting matrix (Z ′

n,j) (stabilized).

at the higher frequencies. In comparison to the LP reference,
XLP with this weighting scheme exaggerates high-frequency
formants and even produces spurious formants. However, as
seen from the rightmost panels, the stabilization operation de-
scribed in Section 2.3.3 clearly smoothes the formant struc-
ture, making it even somewhat smoother than that of LP. The
predictably smooth formant structure and the controlled tem-
poral behavior of SXLP may also reflect robustness against
various adverse conditions and sources of variation.
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Fig. 2. Spectra from an utterance (length 1.93 s, male
speaker), plotted every 20 ms with four spectrum analysis
methods.

3. EXPERIMENTAL EVALUATION

The purpose of the evaluation was to study the noise robust-
ness of the spectrum models by analyzing the average dis-
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Fig. 3. Spectra from an utterance (length 1.50 s, female
speaker), plotted every 20 ms with four spectrum analysis
methods.

tortion in the mel frequency cepstral coefficient (MFCC) do-
main. The experiment was carried out using speech mate-
rial from the TIMIT American English database, artificially
corrupted by factory1 and babble noise from the NOISEX-
92 database at a given frame-averaged signal-to-noise ratio
(SNR) level. The factory1 noise is machinery noise from a
factory, including frequent transient impulsive sounds. The
babble noise contains many people talking simultaneously.

Each analyzed signal was pre-emphasized by a FIR filter
1 − 0.97z−1. A total of 183462 speech frames (25 ms frame
length, 10 ms frame shift interval, Hamming window) was
used as material. These frames were the non-silent frames
(according to the TIMIT transcription and excluding voiced
stop closures), from a total of 800 sentences, spoken by 50
male and 50 female speakers. They comprised 73.88 % of the
total duration of the 800 utterances. This material was used
to evaluate noise degradation in terms of MFCC squared Eu-
clidean distance. At each frame location, for the uncorrupted
clean frame and each of the noise-corrupted versions of the
same frame, an MFCC vector was obtained based on each of
the four spectrum analysis methods FFT, LP, WLP and SXLP
(followed by the standard MFCC computation chain of mel
filterbank analysis, logarithm and discrete cosine transform
[1]). Utilization of the MFCC representation is justified be-
cause it is a widely used, auditorily motivated representation
of the short-time magnitude spectrum as well as a popular
feature representation for recognition applications.

Figures 4 and 5 show, for each spectrum analysis method
and each case of noise corruption, the squared Euclidean dis-
tances between the noisy and clean MFCC vectors, averaged
over all the frames. This analysis using an objective MFCC
distortion measure is in line with the results obtained in recog-
nition studies, which were referred to earlier. Specifically, the
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linear predictive methods outperform the FFT spectrum anal-
ysis method in terms of robustness, with the WLP method of-
fering some robustness advantage over conventional LP (the
importance of this will vary from application to application).
Interestingly, the new SXLP method clearly outperforms the
other methods in terms of the MFCC distortion measure.
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Fig. 4. Noisy-to-clean MFCC distances, averaged over
183462 speech frames, with factory noise corruption.
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Fig. 5. Noisy-to-clean MFCC distances, averaged over
183462 speech frames, with babble noise corruption.

4. CONCLUSIONS

A new, stable lag-weighted linear predictive analysis method,
in the framework of the XLP formulation [6], was described,
demonstrated and evaluated. The method is based on a novel
XLP weighting scheme which emphasizes instantaneous, but
at least to some degree persistent, autocorrelation structures.
Although this approach by itself was observed to produce

spectra with spurious and exaggerated formants, the stabiliza-
tion operation of SXLP made the spectra well behaved. This
was reflected in the robustness as measured by average distor-
tion between noisy and clean MFCC representations. In this
analysis, the proposed method outperformed the conventional
FFT, LP and WLP.

The proposed speech analysis method shows promise to
be used next in different applications. More generally, the ap-
proach outlined in this study can be used for creating weight-
ing schemes that focus on the desired information in the anal-
ysis frame and yet, when followed by the stabilization oper-
ation, result in well-behaved spectrum models. A potential
direction for future work is thus the analysis of weighting
schemes according to the specific requirements of different
applications, for example in speech and speaker recognition.
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