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ABSTRACT
This paper addresses the issue of error region detection and charac-
terization in LVCSR transcriptions. It is a well-known phenomenon
that errors are not independent and tend to co-occur in automatic
transcriptions. We are interested in automatically detecting these
so-called error regions. Additionally, in the context of information
extraction in TVBN shows, being able to automatically characterize
detected error regions is a crucial step towards the definition of suit-
able recovery strategies. In this paper we propose to classify error
regions in four classes with a particular focus on errors on person
names. We propose several sequential detection + classification ap-
proaches and an integrated sequence labeling approach. We show
that our best classification system can reach 70% classification accu-
racy on automatically detected error regions. Additionally, the over-
all system is able to detect and correctly characterize 29.6% of error
region corresponding to a person name with a precision of 61.9%.

Index Terms— Error region detection, Error characterization,
Automatic classification, LVCSR.

1. INTRODUCTION
In the context of large vocabulary continuous speech recognition
(LVCSR), automatic speech recognition (ASR) systems can now
provide transcriptions with good performance, allowing them to be
integrated into many applications. However, some of the remaining
errors can still be a problem for certain applicative domains, such as
information extraction. In this article, the purpose is to identify and
characterize errors inside automatic transcriptions. Not only are we
interested in detecting erroneous words but the purpose is to detect
and characterize error regions (i.e. clusters of consecutive errors).

Traditionally, error detection has been handled through the defi-
nition of confidence measures (CM) representing the probability of a
word to be correct [1]. Applying a threshold on this score allows the
system to be tuned at a given operating point which can be suitably
chosen depending on the applicative context (high recall or preci-
sion). CM can be seen as a binary classifier that classifies words
into correct/incorrect but they are usually evaluated in their ability to
determine if a word is correct. However, for tasks where word error
rates are low, the binary classification task is typically an unbalanced
data binary classification task and evaluation focused on the major-
ity class (correct words) tends to hide the ability of the classifier to
handle the minority class (erroneous words). In this paper we are
interested in detecting errors in the context of TV Broadcast News
(TVBN) shows with unbalanced repartition of input data (in favor of
correct words). The evaluation issue will be addressed and we will
focus on the ability of our system to effectively detect errors.

It has been already observed in the literature that ASR errors are
not independently distributed, nor across the data (some parts of the
shows, some speakers generate more errors than others), nor with re-
spect to other errors. Some phenomena generate several consecutive

errors (so-called error regions in this paper). This can happen for
many reasons, such as an unknown long word substituted by several
short words, a substitution that propagates to adjacent words because
of the language model, or still bad acoustic conditions for which the
decoder provides a completely erroneous output. In [2], authors an-
alyzed Broadcast News (BN) and Conversation Telephone Speech
(CTS) transcription errors and concluded that two-third of the errors
appear in a group (n ≥ 2 consecutive errors). In this paper we are
interested in detecting and characterizing those error regions in or-
der to be able to define suitable recovery strategies. The addressed
problem is then a sequence labeling problem of ASR outputs.

Beyond error detection we are interested in automatically char-
acterizing error causes. In fact, not all error causes have the same
impact in a given applicative context. This automatic characteriza-
tion of an error would allow to decide whether to ignore it or eventu-
ally to define suitable strategies to correct it. From the analysis point
of view, several studies have provided detailed posterior analysis of
error causes. [2] highlighted that the majority of errors in BN tran-
scriptions in English are related to Named Entities. In [3], authors
highlighted that homophones in French language are very frequent
and represent an important source of errors in ASR outputs. Acous-
tic conditions or other linguistic phenomena such as disfluencies are
also usually analyzed as error causes. From the automatic charac-
terization point-of-view however, many studies focused on detect-
ing and correcting Out-Of-Vocabulary (OOV) errors, whose behav-
ior and impact differ from other errors [4]. Specific strategies have
been proposed to detect OOV words by using for example an hybrid
word and sub-word language model [5, 6] or a semantic class lan-
guage model [7]. In [8], authors focus on error regions generated by
OOV words and propose a method which takes into account neigh-
boring contextual information instead of only considering the local
region of OOV errors. Their experimental corpus has been designed
by only keeping meaningful OOVs and excluding the ones with less
than 4 phones and region boundaries are supposed to be known in ad-
vance by aligning confusion networks with the reference transcrip-
tion. The OOV / IV classification task for these error regions yields
a missed OOV rate of 28.4% at 10% false alarm rate. In highly in-
flected languages, OOV words can be of various nature. Not only
proper nouns involved in Named Entities are OOV sources but also
inflections of a given lemma or rare words in the general case. Thus
we have chosen not to focus on OOV as a class but to define more
relevant classes for our applicative context, each of them potentially
containing OOV words. For example, correctly recognizing person
names is essential, no matter if the error is due to an OOV word, the
result is that the person name was not correctly transcribed.

Experimental protocol and focused classes are described in sec-
tion 2. We propose to study in section 3 the distribution of error
sequences inside TV show transcriptions. We then propose several
methods to both detect and characterize error regions, and experi-

4445978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



ments will evaluate them in the last section depending on the detec-
tion, the classification and the overall sequence labeling task.

2. EXPERIMENTAL DATA AND PROTOCOL
2.1. Database description
A corpus of 24 French TVBN shows recorded from October 2008
to January 2009 has been manually transcribed. Person names have
also been manually annotated. The total duration of this corpus is
around 8 hours of speech for around 84k words. The corpus has
been split into a training corpus (15 shows/5 hours) and a test corpus
(9 shows/3 hours). It includes TVBN shows from 7 French generalist
channels and contains planned studio speech as well as interviews,
live reports. As we process complete shows, Broadcast Conversa-
tion (BC) portions are kept in the experiments. ASR is performed
using the VoxSigma speech recognizer v3.5 from Vocapia Research,
based on LIMSI technology [9]. The dictionary contains 65k words,
including 22k proper nouns. The word error rate (WER) on the over-
all corpus is 15.9%. The 13,373 transcription errors decompose in
6,731 substitutions, 4,299 deletions and 2,343 insertions. Detecting
deletion errors is a difficult task and we chose to focus in this work
on substitutions and insertions. Thus our material is composed of
82,352 hypothesized words, containing 9,074 erroneous words. In
this context detecting errors is typically a minority class detection
problem. We use the word confidence measure provided by the ASR
system: posterior probabilities from word lattices. It is a performant
CM from the classical CM evaluation point of view as it results in a
0.36 Normalized Cross Entropy score over the whole corpus.

2.2. Definition of error classes
We chose to focus on 4 types of error sources that are determined
from the alignment between automatic and manual transcriptions.
The alignment is performed with the NIST Sclite tool1, usually used
to evaluate automatic transcriptions. Firstly, the Person name (PN)
class is particularly studied, as this information is essential in many
applications of information extraction. We are also interested in
Other proper noun (OPN) class, which still contains very useful in-
formation. The Homophone (H) class is studied in order to retrieve a
frequent phenomenon of French language. Finally, all the remaining
errors are clustered in the Other (O) class.

In order to determine the Homophone (H) errors, an additional
lexicon has been used in order to compare phonetic representation of
reference and hypothesized words: identical phonemes indicate here
the presence of homophones.

2.3. Deriving error region reference labels
Throughout this work, an error region is defined as a sequence of
consecutive errors. In order to determine the reference label of a
given error region, the sequence of erroneous words is compared to
the corresponding sequence of reference words. Even if deletion
errors are not considered in the detection task, they are taken into
consideration for the reference labeling of error regions. In fact,
when two reference words are recognized as a single word which
corresponds to one of the two reference words, the Sclite alignment
algorithm will determine that the first word is deleted and the second
word is substituted. In order to decide for the substitution error cat-
egory, we need to look at the properties of the two reference words.
This is the reason why, when calculating the corresponding sequence
of reference words, we also include adjacent omitted words. Finally
a sequence of nh erroneously hypothesized words is aligned with a
sequence of nr reference words where nh and nr are not necessarily
equal. To determine the error region label, an order of importance is
associated for each class. The priority is assigned as follows and an
error region corresponds to the class:

1http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

1. Person name (PN) if one of the reference words is part of a
person name.

2. Other proper noun (OPN) if no word in the reference se-
quence is part of a proper name and if one word of the ref-
erence sequence is a proper noun.

3. Homophone (H) if no word in the reference sequence is a
proper noun and one of the erroneous words of the region has
been aligned with an homophone word in the reference.

4. Other (O) otherwise.

If one type of error is found in the error region, the entire error
region takes the error class label depending on its priority (for ex-
ample, if the error region contains three errors, including one person
name error, and two others, the region has the person name label).

3. ERROR REGIONS INSIDE LVCSR TRANSCRIPTS: A
QUANTITATIVE STUDY

To assess the interest of recognizing and categorizing error regions,
we present in this section a quantitative study which will analyze er-
ror regions depending on various parameters. Firstly, figure 1 shows
repartition of transcription errors depending on length of sequence
errors. Two sources of data are presented: the error repartition per
word and per error region (for example, two consecutive errors count
for one region). We can see that more than 25% of errors are iso-
lated errors and 55% of regions are singletons (histogram 1). These
results, made by analyzing TVBN transcriptions, are close to the
ones presented by [10] which found that 30% of errors occurred in
isolation for dictation systems. On the overall, an average of 1.7 con-
secutive errors has been observed. When focusing on multiple error
regions, representing 75% of the misrecognized words, the average
length of these regions is 2.2 words. This score comforts the fact that
it is interesting to try to detect these regions.
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Fig. 1. Repartition (per word and per region) of transcription errors
depending on length of sequence errors.

Table 1. Number of error regions, average number of consecutive
errors and OOV region proportion depending on the 4 error classes.

PN OPN H O All
Error regions 359 301 1,489 3,024 5,173

Error region length 2.0 2.1 1.5 1.7 1.7

% OOV 51.5% 31.9% 6.9% 6.6% 11.2%

Table 1 presents the repartition of error regions for the 4 error
classes, the average number of consecutive errors, and the OOV pro-
portion per region class. The high number of homophone error re-
gions justify our choice to isolate this error for French language. In
fact, by looking more closely to this error type, we found that 74%
of these errors are due to inflected forms of a word (same lemma but
different spelling depending on the context). Person name and Other
proper noun error regions are longer on average (more than 55% of
PN and OPN error regions are multiple error regions with n ≥ 2).
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At the opposite, more than 60% of homophone and other error re-
gions are singletons. The last line shows that 48.5% of the person
name error regions are not due to an OOV word, which reinforces
our idea to detect error regions and not only OOV ones.

4. EXTRACTION AND CHARACTERIZATION OF
REGION ERRORS

4.1. Sequential approach
As mentioned in the introduction, simultaneously detecting and
characterizing error regions can be seen as a sequence labeling task.
We firstly propose a sequential approach which, in a first step, con-
sists in segmenting transcriptions into error region / correct region,
and in a second step associating these error regions with a class.

4.1.1. Error region segmentation
We propose 3 different approaches for segmenting error regions.
Firstly, we use the classical approach and propose to segment error
regions by applying a threshold θb on a posteriori word confidence
scores provided by ASR system. In fact, the consecutive words de-
tected as a possible error (< θb) will be considered as an error re-
gion. This method will be called Baseline.

Applying a single threshold on CM may not be sufficient as con-
secutive errors are not necessarily all associated with a low confi-
dence score. In order to relax the constraint, we introduce an au-
tomaton with two thresholds, as presented in figure 2. Each word of
a sentence is analyzed: in the Correct state, the word is considered
as correctly recognized, while the Error state detects the word as
incorrect. The two thresholds on CM are very important, since the
threshold θerr permits to change from Correct to Error state, or to
stay in the Correct state, and conversely for the threshold θcor. The
last constraint is that θerr should be inferior to θcor. The automa-
ton will be used for each sentence at both side (from left to right and
vice versa) to capture errors not found in a way (due to 2 thresholds).
Higher order automata have been implemented but yielded too large
regions. In this approach, we are not only focused on the current
CM, but on the surrounding ones. For example, it is possible to stay
in the Error state if the confidence score is between θerr and θcor.
It would not have been possible with only one threshold, and thus
should catch larger error regions.

Correct Error

CM < θerr

CM > θcor

CM < θcorCM > θerr

Fig. 2. Capturing error regions using an automaton with two thresholds
(θerr / θcor) and confidence measures (CM) of transcribed words.

Finally, we propose to use Conditional Random Fields (CRF)
[11], a statistical method allowing to segment and label sequence
data. As presented in [12], CRF can be used to improve a posteri-
ori confidence scores by adding extra features (words, POS tags...)
and methods to re-estimate them. The advantage is that this method
uses various sources of information about surrounding words to de-
tect regions: bigram words, Part-Of-Speech (POS) tags and syntactic
chunks 2, CM and the duration of current, previous and next words.

4.1.2. Error class labeling
After, finding these error regions, we propose to associate them with
one of the 4 error classes described in section 2 using a classifica-
tion method. We chose to use Icsiboost3, a large-margin classifier
based on the AdaBoost algorithm. Various features are used: region

2Lia tagg: http://pageperso.lif.univ-mrs.fr/∼frederic.bechet
3http://code.google.com/p/icsiboost

words (bigram), trigram POS tags and syntactic chunks, the number
of words of the region, quadrigram on the 5 previous words, the du-
ration and the average of CMs of the speaker turn and the average
number of syllable per word.

4.2. Integrated approach
As CRF can segment and label sequence data, we propose to use
that method to directly retrieve error regions and label them with
one of the 4 focused error classes instead of detecting regions and
then categorize them. The same features than the one described for
the sequential CRF approach will be used.

Finally, the previously proposed approaches should provide dif-
ferent error regions and classes. So, we propose a last solution which
consists in combining all these outputs in merging error regions with
the boolean operator “OR”, and after choosing the error region class
still depending on the priority defined in section 2.

5. EXPERIMENTS
5.1. Error region detection task
Firstly, we are interested in evaluating our proposed methods on the
task of detecting error regions. We propose to use the classical pre-
cision/recall metric. Indeed, we are not particularly interested in
retrieving the exact error regions, but pointing out places in tran-
scriptions where an error region could appear: if a detected region
overlaps with true error region, the detection is considered as correct
even if region frontiers are not exactly retrieved. Table 2 presents
precision, recall and F-measure obtained for the error region detec-
tion task with our methods and average length of detected regions.

Table 2. Recall, Precision and F-measure for the error region de-
tection task and average length of detected regions.

Recall Precision F-measure Avg length
Sequential Baseline 24.0 78.0 36.7 1.2

Sequential Autom. 27.3 87.9 41.6 1.7

Sequential CRF 43.1 82.1 56.5 2.2

Integrated CRF 37.3 78.9 50.6 2.2

Fusion 48.2 79.6 60.1 2.3

We can see that Sequential CRF is the best sequential method
for this task, with a recall of 43.1% and a precision of 82.1%. Se-
quential Baseline is not sufficient to capture error regions as only 1.2
consecutive errors are captured on average. Sequential CRF method
is also better than the integrated one, which only reaches a 50.6%
F-measure score. This could be explained by the fact that the in-
tegrated method is trained on more error classes, while evaluated
on the same binary task. Finally, the Fusion is also very interest-
ing, with the best recall (48.2%) and F-measure (60.1%) of all the
approaches: we observed that regions of n≥2 errors are better de-
tected with the CRF methods, while others better detect single error
regions. However, the recall rate remains under 50%: more than
half of the error regions are not detected. To ensure that the flexi-
ble evaluation constraint does not privilege the fusion approach, we
also evaluated error region detection with a strict constraint (only the
precise frontiers are considered correct). The same tendency could
be observed, the Fusion is still the most performant approach. How-
ever, with this strict constraint, best results reach a 21.7% recall and
a 35.9% precision. Precise frontier detection is not yet reliable and
detecting error regions remains a difficult task.

5.2. Error region classification task
In these second experiments, we focus on the evaluation of error re-
gion classification task. Classification is evaluated in terms of clas-
sification accuracy: we want to know if the detected error regions
are correctly labeled with the correct error class. The missed error
regions, i.e. which are present in the reference but have not not been
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detected, are ignored. A detected error region can either be a good
detection or a false alarm. Table 3 presents the number of detected
regions, overall classification accuracy and correct classification rate
of the 4 error classes.

Table 3. Number of detected regions, overall classification accuracy
(All) and correct classification rate of the 4 error classes.

Nb regions All PN OPN H O
Seq. Baseline 324 69.7 20.5 0.0 22.8 96.7
Seq. Autom. 369 69.8 24.2 4.1 21.8 96.2

Seq. CRF 554 66.3 30.3 0.0 19.5 96.6

Integ. CRF 512 70.8 51.5 13.5 66.3 80.3

Fusion 652 69.7 53.4 15.2 56.2 81.6

We can see that the best overall classification accuracy is ob-
tained with the Integrated CRF method which reaches 70.8%. This
method is also very accurate to label Homophones (H) (66.3%). This
is not very surprising since this method is designed to directly detect
and label region errors. It is also interesting to note that Sequential
CRF, which has the best F-measure for the error region detection
task, has here the lowest classification rate in the labeling task. It
seems that the detected regions retrieved by this method are more
difficult to classify. We observed that results are very low on OPNs
when focusing on sequential approaches. The Icsiboost method is
not efficient for this minority class. Finally, the Fusion approach
allows to improve the PN (53.4%) and OPN (15.2%) performance.

Considering FA (falsely detected error regions), we measured
with the fusion approach that only 3% of the 334 FA are classified as
PN and 0.6% as OPN. This is an interesting result meaning that the
classification process is robust to FA and that falsely detected error
regions are not harmful from an applicative point of view.

5.3. Overall process evaluation
Finally, the last evaluation seeks to evaluate the complete detection
and classification task. Table 4 presents performance in terms of
recall and precision obtained for the 4 error classes.

Table 4. Recall/Precision of the proposed methods applied to the 4
error classes.

PN OPN H O
Seq. Baseline 6.1/80.0 0.0/0.0 4.2/41.1 25.1/47.4

Seq. Autom. 7.6/76.9 1.0/100 4.8/45.6 28.5/58.8

Seq. CRF 17.4/60.5 0.0/0.0 7.6/46.1 42.0/52.7

Integ. CRF 25.8/59.7 5.1/26.3 21.8/43.7 30.4/65.1

Fusion 29.6/61.9 7.1/36.8 24.4/42.6 40.6/61

By focusing on the sequential approaches, we can see that the
performance is globally low, except for the Other class. This is not
really surprising since this is the most represented error class. We
can also note that the Integrated CRF method outperforms any of the
sequential ones. Finally, with the Fusion approach, an improvement
is observed, particularly on proper nouns (PN and OPN).

The overall detection and characterization process allows to de-
tect 29.4% of PN with a precision of 61.9%. It is particularly in-
teresting since we especially want to detect person names. Further-
more, 70% of person name occurrences in the corpus are uttered
by the anchor speaker (main journalist presenting the show) while
anchor speaker turns represent 25% of the total amount of speaker
turns and 30% of uttered words (see [13] for a detailed analysis of
the corpus in terms of speaker roles). This is the reason why we are
particularly interested in evaluating our system performance for the
subset of anchor speaker turns. This subset gathers 63% of the to-
tal error regions made on the PN. We obtained encouraging results,
since we achieved 37.4% in recall and 79.5% in precision, mean-
ing that we can detect 37.4% of person names uttered by the anchor
speaker that were misrecognized.

6. CONCLUSION AND PERSPECTIVES
In this paper, we proposed to study LVCSR transcription errors in
TVBN. We chose to address the twofold issue of error region detec-
tion and characterization. It is a well-known phenomenon that errors
are not independent and tend to co-occur in automatic transcriptions.
We have presented a quantitative study that illustrated this need for
seeing errors as part of a region. In fact, only 25% of errors are iso-
lated. Then, we proposed to classify error regions in 4 error classes:
Person name (PN), Other proper noun (OPN), Homophone (H) and
Other (O). We particularly focused on the person names, since this
class is essential for further information extraction processing. Sev-
eral approaches have been proposed: sequential detection + clas-
sification process, integrated sequence labeling method. Our best
classification system can reach a 70% classification accuracy on au-
tomatically detected error regions. Additionally, the overall system
is able to detect and correctly characterize 29.6% of error regions
corresponding to a person name with a precision of 61.9%. When
focusing on the anchor speaker turns, the proposed method retrieves
37.4% of PN error regions with a 79.5% in precision. In a future
work, we will explore new features, such as language model estima-
tions, often used in OOV detection studies. Moreover, effort should
be made on OPN detection class, since results are not yet satisfac-
tory. The problem of the high number of missed region detection
should be investigated. Finally, it could be interesting to analyze all
error classes depending on various speaker roles.
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