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ABSTRACT

We present a large scale effort to build a commercial Automatic
Speech Recognition (ASR) product for Arabic. Our goal is to sup-
port voice search, dictation, and voice control for the general Arabic-
speaking public, including support for multiple Arabic dialects. We
describe our ASR system design and compare recognizers for five
Arabic dialects, with the potential to reach more than 125 million
people in Egypt, Jordan, Lebanon, Saudi Arabia, and the United
Arab Emirates (UAE). We compare systems built on diacritized vs.
non-diacritized text. We also conduct cross-dialect experiments,
where we train on one dialect and test on the others. Our average
word error rate (WER) is 24.8% for voice search.

Index Terms— Speech Recognition, Arabic, Voice Search

1. INTRODUCTION

The Arabic language has multiple variants, including Modern Stan-
dard Arabic (MSA), the formal written standard language of the me-
dia, culture and education across the Arab world. MSA however is
not a native language of any Arab. The Arabic dialects, in contrast,
are the true native language forms. They are generally restricted in
use to informal daily communication. They are not taught in schools
or even standardized, although there is a rich popular dialect culture
of folktales, songs, movies, and TV shows. Dialects are primarily
spoken, not written. However, this is changing as more Arabs gain
access to electronic media such as social networks, email, etc.

The Arabic dialects we see today originate from historical inter-
actions between Classical Arabic and languages of the contempora-
neous cultures. For example, Algerian Arabic has many influences
from Berber as well as French. Arabic dialects differ substantially
from MSA and each other in terms of phonology, morphology, lex-
ical choice, and syntax. Arabic dialects are natively spoken by over
200 million people.

There has been a great deal of work on Arabic ASR; a consid-
erable portion of this work has been done throughout the DARPA
GALE project. However, the vast majority of these works have fo-
cused only on MSA, mostly for Broadcast News (BN) and Conver-
sation (BC) (e.g., [1]). Dialectal Arabic has received less attention.
Recent work on dialects includes a demonstration that some acoustic
data from MSA slightly improves the recognition of Egyptian Ara-
bic [2]; Biadsy [3] and Soltau et al. [4] have shown how an Arabic
dialect ID system can be used to identify Levantine Arabic data in a
mix of dialects in the GALE BC data to bootstrap a Levantine rec-
ognizer.

Here we describe Google’s search by voice system for Arabic.
In this system, users speak their search queries, typically using a mo-
bile phone, and the system returns a transcription and web search re-
sults. We focus on five Arabic dialects collected from five countries:

(1) Saudi-Arabia (collected from Riyadh and Jeddah) (SA), (2) the
United Arab Emirates (Abu Dhabi and Dubai) (AE), (3) Jordan (Am-
man) (JO), (4) Lebanon (Beirut) (LB), and (5) Egypt (Cairo) (EG).
The paper is organized as follows. We describe our data collection in
Section 2. We then describe our system design in Section 3, where
we also discuss our diacritized vs. non-diacritized systems. In Sec-
tion 4 we show our experimental results on the five dialects as well
as our cross-dialect comparisons. We conclude in Section 5.

2. DATA COLLECTION

Most of the available Arabic acoustic data employed by the ASR
community is MSA recorded from BN and BC. As mentioned above,
MSA is not the native language of Arabic speakers. Also, BN is
typically well-planned read speech recorded in an environment free
from background noise. The available dialectal Arabic data on the
other hand are telephone conversations sampled at 8kHz. These gen-
res and acoustic conditions do not meet our requirements for build-
ing an Arabic voice search system, for the following reasons: (1)
Our data has to be recorded from different dialects across the Arab
world to capture phonetic differences. (2) The data has to be clas-
sified based on these dialects so we can build and compare systems
across dialects. (3) We prefer acoustic data sampled with 16kHz
recorded using a mobile phone to avoid channel mismatch. (4) Our
data should be recorded in a recording environment similar to that in
which our system will be used (e.g., rooms, streets, shopping centers,
cars, etc.). (5) The semantic nature of the utterance is also specific to
the task. A voice search system expects short spoken search queries,
not long dictation or BN-style utterances.

For all these reasons we decided that we needed to collect our
own acoustic data from different parts of the Arab Wold. The ef-
ficient collection of high quality data thus became a crucial issue
in our system development. We collected our spoken utterances
in different acoustic environments from a variety of speakers using
our DataHound Android application [5]. This application displays
prompts based on common Arabic and English search queries on a
mobile device. We asked our users to speak these queries as close to
their native dialect as possible. We recruited native Arabic speakers
from each of the five dialects to record more than a quarter million
spoken queries per dialect. Our speakers are both female and male
volunteers from different age ranges. We recorded the audio samples
in both quiet and noisy environments, including offices, shopping
centers, public transportation, and others. We use most of the data as
training and hold out around 15,000 utterances for testing from each
dialect. The sets of speakers appearing in the training and test sets
are disjoint in all dialects. The number of speakers and queries and
the total duration of our data sets are shown in Table 1.
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Dialect Set # Speakers # Queries Duration

EG
train 604 245K 223 hrs
test 29 15K 12.4 hrs

JO
train 848 260K 224 hrs
test 21 15K 10.7 hrs

SA
train 745 299K 226 hrs
test 29 15K 10.6 hrs

AE
train 587 235K 193 hrs
test 29 15K 10.6 hrs

LB
train 795 264K 219 hrs
test 29 15K 13.8 hrs

Table 1. Train and Test Data for All Dialects

3. ASR SYSTEM DESCRIPTION

3.1. Acoustic Modeling

The acoustic models in our systems are standard 3-HMM-state
context-dependent (tri-phone) models with a variable number of
Gaussians per state. The front-end is a 13-dimensional PLP front-
end with cepstral mean normalization and energy-based endpointer,
to remove excessive silence. Each frame is spliced together with
four preceding and four succeeding frames and then Linear Dis-
criminant Analysis (LDA) is performed to yield 39-dimensional
feature vectors.

Our acoustic models are gender-independent, maximum-likelihood
trained interleaved with estimation of a global semi-tied covariance
(STC) transform, followed by boosted MMI (BMMI) training [6].
For decoding, we use a statically constructed context-dependent
lexicon and language model (see below) which are expressed as
finite-state transducers and composed on-the-fly [7]. We use CM-
LLR for speaker adaptation. The CMLLR matrix is estimated and
incrementally refined using previous sessions (query utterances) of
the same speaker.1

3.2. Language Modeling

In voice search, users speak their search queries and the system re-
turns search results. We have observed that speakers formulate their
spoken queries similarly to the way they type them. This observation
is consistent across languages. Therefore, the best available source
of training data for our Language Models (LM) are the typed search
queries. Since textual data may vary across dialects, we train sepa-
rate LMs on anonymized search query logs from the corresponding
regional search engine. For example, the Egyptian Arabic LM is
trained on the textual queries directed to www.google.com.eg. The
LM for each dialect is trained on search queries sampled only from
one year’s worth of search query logs. In this work, we make use of
5-gram backoff LMs, trained with Katz smoothing [9] and entropy
pruning [10]. All the systems described in this paper make use of a
vocabulary size of one million lexical items.

3.3. Lexicon

For languages with complex letter-to-sound mappings, pronuncia-
tion dictionaries are typically written by hand. However, for mor-
phologically rich languages, such as Arabic, pronunciation dictio-
naries are difficult to create by hand, because of the large number of
word forms, each of which has a number of possible pronunciations.

1This system is similar to our Cantonese voice search system [8].

Arabic morphological features are realized using both concatenative
(affixes and stems) and templatic (root and pattern) morphology with
a variety of morphological and phonological adjustments that appear
in word orthography and interact with orthographic variations.

Fortunately, the relationship between orthography and pronun-
ciation is relatively regular and well understood for MSA. However,
to be able to map Arabic words to their true phonemic representa-
tions, the words have to be first fully diacritized in order to resolve
the ambiguities present in the conventional orthography. Diacritics
in Arabic are used to unambiguously denote the presence or absence
of short vowels, distinguish long vowels from glides or diphthongs,
and indicate geminate consonants. Unfortunately, these diacritics are
largely restricted to religious texts and MSA school textbooks. The
system of MSA diacritics is not generally applicable to spoken di-
alects, which typically have richer vowel inventories. Furthermore,
almost all our Arabic queries and training transcripts are completely
undiacritized. In this work, we experiment with two approaches:
a completely undiacritized ASR system and a fully diacritized one,
employing a diacritization system.

3.3.1. Diacritized ASR System

For the diacritized ASR system, we first diacritize all our textual data
(transcripts and LM data) using Google’s Arabic diacritizer [11].
The diacritizer takes a sentence as input and determines the most
likely diacritics for each word in context, based on word n-grams
(n = 1, 2, 3) and letter n-grams (n = 1, . . . , 5). Our diacritizer
is trained on partially diacritized phrases or sentences crawled from
the Web; therefore it is not tuned for any particular spoken Arabic di-
alect. Given the nature of diacritized Arabic text found on the Web,
the diacritizer is biased towards Classical Arabic.

For this ASR system, we build our lexicon similar to [3, 12].
Specifically, employing the automatically diacritized textual data,
we build our lexicon by mapping each fully diacritized word in
our transcripts to its pronunciation using the pronunciation rules
described in [3, 12]. Note that these rules are tuned for MSA, not
for Arabic dialects. Our LM is also trained on fully diacritized texts.

3.3.2. Undiacritized ASR System

Both the lexicon and LM for the undiacritized ASR system are
built using completely undiacritized texts.2 The lexicon employs a
simplistic letter-to-sound mapping (i.e., graphemic representation).
Note that in this representation, short-vowels, for example, will not
be modeled as separate phonemes; acoustically, they will be mod-
eled as part of the surrounding consonant acoustic models. This
treatment is similar to the “unvowelized” system in [4].

Two letters are typically confused in informal writing: tā’
marbūt.ah and final hā’. Both of these letters can be pronounced
either /t/ or /h/. Note that the letter hā’ in other positions in the word
is always pronounced /h/. ’Alif maqs. ūrah (/a:/) is sometimes written
instead of final yā’ (/i:/). Instead of correcting the transcripts and
adding pronunciation variants in the lexicon, we map these letters
to two special phonemes. We hypothesize that the corresponding
acoustic mixture models will capture their different realizations.
The only phonological process we model in this lexicon is the
‘sun-letters’ assimilation (see [12]).

2We removed any diacritics that may have been present.
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System WER (%)

Undiacritized 24.6

Fully Diacritized (score with diacritized) 29.3

Fully Diacritized (score with undiacritized) 27.5

Table 2. Diacritized vs. Undiacritized System for EG

3.3.3. English Words, Numbers, and URLs

Arabic typed search queries include a significant portion of tokens
that are not written with Arabic script, including English words,
numbers written with European digits, and URLs. Because such
tokens are frequent, we include them in our LM and lexicon. The
pronunciations of English words in our LM are imported from our
American English lexicon. We map the English phonemes to the
closest Arabic phonemes. URLs are initially identified in our LM
data, and then parsed to tokens. Similar to English words, the pro-
nunciations for these tokens are imported from the English lexicon.
Each number in our LM data is first converted to a list of words
using an Arabic number grammar (FST), and those words are then
pronounced according to our Arabic pronunciation rules.

4. EXPERIMENTS

4.1. Diacritization or Not

We would like to determine whether diacritization is important for
Arabic-dialect ASR. In this work, we test this hypothesis only for
Egyptian Arabic. We train two Egyptian Arabic systems, as de-
scribed in Section 3, using the Egyptian training data in Section 2.
The first system employs fully diacritized components (lexicon and
LM), as described in Section 3.3.1; and the second employs an un-
diacritized lexicon and LM, as explained in Section 3.3.2.

Note that the output transcripts of the diacritized system is fully
diacritized text. To be able to score our utterances, we can initially
either automatically diacritize our reference transcripts or remove di-
acritics from the recognition hypotheses.3 In this work, we test both
scoring schemes. Nevertheless, it is important to note that diacritics
are typically not orthographically represented in Arabic texts. Dia-
critization is generally not necessary to make the transcript readable
by Arabic literate readers. Thus, Arabic ASR systems typically do
not output fully diacritized transcripts. Moreover, the vast majority
of Arabic web pages are undiacritized, hence not useful for voice
search. But, for other applications, such as speech-to-speech trans-
lation, a system that outputs fully diacritized text may benefit Arabic
machine translation [13].

Table 2 compares the Word Error Rate (WER) of our undia-
critized and diacritized Egyptian ASR system with both scoring
schemes (tested on Egyptian Arabic). Interestingly, we observe
that the undiacritized system outperforms the diacritized system
with both scoring schemes. One possible explanation is that the
automatic diacritizer we use here has not specifically tuned for di-
acritizing Egyptian Arabic, but rather a mix of Arabic Web text.
Moreover, the pronunciation rules we employ to map from dia-
critized words to pronunciations have been designed for MSA. Our
results are still consistent with previous work on Levantine Ara-
bic [4], although our system is different in multiple aspects (e.g., the
use of a fully diacritized LM). We also observe that, as expected,
removing the diacritics improve WER, but it is interesting to see

3We do not apply any other Arabic text normalization steps before scor-
ing, such as removing alef with hamza, etc.

System Dialect-Specific Combined

AE 27.7 29.7

SA 28.7 30.0

EG 24.6 29.8

JO 18.5 19.2

LB 24.2 27.9

Table 3. WER (%) of the Dialect-Specific vs. Combined Systems

that the difference is not very large. In other words, our system can
produce relatively accurate fully diacritized Arabic text.

4.2. Dialect-Specific Systems vs. One Combined System

After settling on an undiacritized system design based on the re-
sults of the comparison for Egyptian, we built a dialect-specific ASR
system for each of the five dialects. Each dialect-specific system is
trained on the corresponding training data, described in Section 2.
Similarly, we also built a combined system trained on all the pooled
acoustic data from the five dialects, and all the combined textual
data for training the LM. All these systems employ the undiacritized
lexicon and LM, as discussed in Section 3.3.2. The first column of
Table 3 shows the WER of each dialect-specific system when evalu-
ated on its held-out test data. The second column shows the WER of
our combined system when tested on each dialect test set.

We observe that the best performing system is that of the Jorda-
nian dialect followed by Lebanese (both are Levantine dialects), then
Egyptian, followed by UAE Arabic, and Saudi Arabic dialect (UAE
and Saudi Arabic are Gulf dialects). We have investigated the reason
behind the relatively low WER for Jordanian Arabic. Listening to a
sample of utterances of this dialect, we have noticed that the train-
ing and testing data sets were generally recorded in significantly less
noisy environment than those of the other dialects. Further research
is required to understand why the speech of Gulf dialects appears to
be significantly harder to recognize than that of the other dialects.

We also observe that the combined system performs consistently
worse than the dialect-specific systems across all dialects, although
the combined system is trained on about 5 times the training data.
We obtain the highest increase in WER for Egyptian. Yet in absolute
terms, the combined system is still performing relatively well on all
the dialects. This may be due to the nature of our data collection:
although we asked our volunteers to read the queries as natively as
possible, we find that a good percentage of the utterances were read
with MSA pronunciations. We speculate that on fully spontaneous
data, the difference between the systems will dramatically increase.

It should be noted that there is another advantage of using the
dialect-specific systems over the combined system. Our combined
system makes use of far more Gaussian mixture components and
context-dependent states than the dialect-specific systems. In gen-
eral, the higher the number of Gaussians and context-dependent
states the slower the system is and the more memory it requires. The
numbers of Gaussians used in our dialect-specific systems range
between 70,000 and 90,000, with about 4,000 context-dependent
states, whereas the combined system utilizes about 300,000 Gaus-
sians and about 12,000 states.

4.3. Cross-Dialect Experiments

Next we wanted to know how well an Arabic ASR system trained
on one Arabic dialect performs when tested on other dialects.4 This

4This is feasible because all of our data share the same orthography.
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System/Test Set AE SA EG JO LB

AE 27.7 34.4 41.4 22.3 36.8

SA 31.0 28.7 41.4 23.0 42.0

EG 37.7 45.9 24.6 24.7 36.9

JO 32.6 42.6 38.7 18.5 34.8

LB 34.0 44.0 36.9 20.4 24.2

Table 4. WER (%) of the Cross-Dialect Evaluation

is particularly important for our decision about the minimal number
of systems we need to deploy to cover all the dialects of the Arab
World. Since certain queries are significantly more common in one
country than others, we decided to perform a cross-dialect acoustic
comparison while always employing the target dialect LM and the
same undiacritized pronunciation rules. In other words, we use the
acoustic models trained on dialect X and test it on the held-out test
set of dialect Y , using the LM of dialect Y and a shared lexicon.

Table 4 shows our cross-dialect WER results.5 As expected, for
each dialect test set (columns), the best result is always achieved
by the system trained on that dialect. We also observe that all five
systems perform relatively well when tested on the Jordanian test set.
This is perhaps due to the relatively noise-free Jordanian test set (see
Section 4.2). The average within-dialect WER (training and testing
on the same dialect) is 24.8%. The cross-dialect WER (training on
X and testing on Y �= X) is 35.1%. This large difference suggests
that these dialects are in fact acoustically different. We may conclude
that at least some of these systems should be built separately.

To further analyze our results, we use the matrix X of cross-
dialect WERs from Table 4 to build a symmetric dissimilarity matrix
A, where Ai,j = (Xi,j +Xj,i)/2; Ai,i = 0. We then visualize our
results using Multidimensional Scaling (MDS) to project A into 2D
space. Figure 1 shows the data-driven dialect map of our dialects.
Interestingly, this map corresponds to the geographical map, except
for AE which is located south-east of SA. Note that this map can
help us identify what dialects can be combined in one system. We
can see, for example, that Egyptian Arabic is quite isolated, which
is also supported by linguists – Egyptian Arabic has distinguishable
linguistic cues (e.g., syllabic structure is simple).

AE

SA

EG

JO

LB

Fig. 1. Data-Driven Dialect Distance Map Derived by MDS from
Cross-Dialect WER (left) vs. Political Map (right)

5. CONCLUSIONS AND FUTURE WORK

We have presented Google’s Arabic voice search system design. We
described our Arabic data collection process from five regional di-
alects. We found that an Egyptian ASR system that completely ig-

5The diagonal of Table 4 is the same as the first column of Table 3.

nores diacritics (when building our lexicon and language model) per-
forms better than a system that employs automatically obtained dia-
critics: short vowels and consonant lengthening are simply modeled
as part of the consonant acoustic models. We obtained good WERs
(18%–29%) for our five Arabic dialects when each is tested on the
same dialect. We also conducted cross-dialect experiments, where
we trained on one dialect and tested on the others. When project-
ing these cross-dialect WERs into 2D space using multidimensional
scaling, the resulting dialect similarity map closely corresponds to
the geographical map. We conclude that some of our Arabic dialects
(e.g., Egyptian) are better handled in a separate dialect-specific sys-
tem. Finally, we found that dialect-specific systems consistently per-
form better than a combined system trained on pooled data.

For future work, we plan to revisit all our findings by evaluat-
ing on more diverse spontenous test sets. We will experiment with
adaptation techniques to support more Arabic dialects using the five
collected data sets as our basis.
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