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ABSTRACT

The acoustic models in state-of-the-art speech recognition

systems are based on phones in context that are represented

by hidden Markov models. This modeling approach may be

limited in that it is hard to incorporate long-span acoustic

context. Exemplar-based approaches are an attractive alter-

native, in particular if massive data and computational power

are available. Yet, most of the data at Google are unsuper-

vised and noisy. This paper investigates an exemplar-based

approach under this yet not well understood data regime.

A log-linear rescoring framework is used to combine the

exemplar-based features on the word level with the first-pass

model. This approach guarantees at least baseline perfor-

mance and focuses on the refined modeling of words with

sufficient data. Experimental results for the Voice Search and

the YouTube tasks are presented.

Index Terms— Exemplar-based speech recognition, con-

ditional random fields, speech recognition

1. INTRODUCTION
State-of-the-art speech recognition systems are based on hid-

den Markov models (HMMs) to represent phones in context.

These models are convenient due to their simplicity and com-

pactness. However, it is hard to incorporate long-span acous-

tic context into this type of models, without pooling observa-

tions from different examples on the frame level.

Non-parametric, exemplar-based approaches such as k-

nearest neighbors (kNN) appear to be an attractive alternative

to overcome this limitation of conventional HMMs and may

be more effective at capturing the large variability of speech.

In this paper, we investigate an exemplar-based (also known

as template-based) rescoring approach to speech recognition,

which can be considered a variant of kNN on (pre-)segmented

acoustic units such as words.

Like for most non-parametric approaches, the main con-

cerns about exemplar-based speech recognition are that it

requires large amounts of data and thus, massive computa-

tional power. The origin of the complexity is twofold. First,

there is no compact representation as in case of conventional

HMMs and all data need to be memorized and processed.

Second, the Dynamic Time Warping (DTW) distance [1, 2] is

used to measure the similarity between two templates. Using

dynamic programming, the computation of this distance has

quadratic complexity in the length of the templates.

Current distributed computation and storage systems can

process an unprecedented volume of speech data collected

from mobile and video sharing speech applications. How-

ever, most of the data are of low quality in the sense that it is

unsupervised and noisy data. For these reasons, the focus of

this paper shall be on the following two issues.

• Investigate exemplar-based speech recognition for

thousands of hours of unsupervised and noisy data.

• As a preliminary, implement an infrastructure that

makes such investigations feasible and reasonable.

To the best of the authors’ knowledge, existing work has

focused on the TIMIT and Wall Street Journal (WSJ) tasks

with comparably little (less than 100 hours) and clean data [3,

2, 4, 5]. Results for the Voice Search task for a few hundred

hours of supervised data were shown in [6], although heavy

template selection was used to keep the computation time suf-

ficiently low.

In this paper, we investigate exemplar-based features on

the word level. These features are combined with the first-

pass model in a rescoring pass. For the combination, we

use conditional random fields on n-best lists/word lattices [7].

This approach has the advantage that additional information

can be incorporated without building a competitive, stand-

alone template system like for conventional system combi-

nation using ROVER or confusion network combination [8].

Unlike for a stand-alone template system [2], full coverage

of the data by the templates is not required because a first-

pass model is used as a background model. In particular, this

allows us to use the word as the acoustic unit. This choice

not only increases the acoustic context compared to the con-

ventional triphones (except for short words) but also helps to

structure the search space for faster search.

The remainder of the paper is organized as follows. Sec-

tion 2 defines the template features to be used in this work.

Section 3 discusses how these features are used for rescor-

ing a first-pass model. Experimental results are provided in

Section 4. The paper is concluded in Section 5.
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2. EXEMPLAR-BASED FEATURES
This section describes the template features used in this pa-

per. These features use the words as the acoustic unit. Here,

we distinguish between the “1 feature / word” and the “1 fea-

ture / template” approach. The first approach is similar to

the template features used in [6, 4] and are inspired by the

exemplar-based approach to speech recognition [1, 2]. The

second approach resembles a radial basis function kernel on

the word level. It is expected to be less sensitive to errors than

the first approach because there is no explicit notion of correct

and incorrect templates.

The template features are based on some distance d(X,Y )
between two sequences of feature vectors X,Y of different

length, say the common 39-dimensional PLP features. A

common metric is the Dynamic Time Warping (DTW) dis-

tance [1, 2]. The simplest variant is defined as the summed

Euclidean distances of the best warping of the two sequences.

The warping usually is subject to certain constraints, for

example, monotonicity and bounded jump size. The DTW

distance can be computed by dynamic programming, with a

complexity quadratic in the number of frames. The distance

is length-normalized for further processing to make templates

of different length comparable.

Two possible definitions for template features follow.

They are based on the segmented word W (for example, a

word lattice arc) and the frame-features X associated with

this word segment.

“1 feature / word” In this approach, the feature is set to the

average distance between the hypothesis X and the k-nearest

templates of X associated with the hypothesis word W , Y ∈
KNNW (X) if the word hypothesis W ′ matches the template

word W . Otherwise, it is set to zero.

f tmpl
W ′ (X,W ) =

⎧⎨
⎩

∑
Y ∈KNNW (X)

d(X,Y )
|KNNW (X)| if W ′ = W

0 otherwise

There is one feature for each word. Only one feature can

be active at the same time. These features require that the

templates are correctly classified. This type of features was

previously used on the utterance level [6] and for word tem-

plates composed of phone templates [4]. A similar approach

for isolated word recognition was presented in [3].

“1 feature / template” In this approach, the DTW distances

are directly used as the features. Considering all templates

for each word is not feasible at our scale. So we only activate

the templates for the word under consideration. Thus, there

is one feature for each template, resulting in several millions

of features. Furthermore, the distances are exponentiated to

achieve a more sparse representation and thus faster training.

In addition, this non-linearity allows us to model arbitrary de-

cision boundaries and not only (piecewise) quadratic decision

boundaries as in the absence of this non-linearity. In the “1

feature / word” approach, this non-linearity is not essential

due to selecting the k-nearest neighbors for averaging.

fkernel
Y (X,W ) =

{
exp(−βd(X,Y )) if Y template of W

0 otherwise

The scaling factor β needs to be tuned. Note that there is

no explicit notion about correct and incorrect templates and

the learning algorithm hopefully learns the relevance of each

template. This appears to be an attractive property in our case.

M -gram word templates are word templates in an m-gram

word context. Note that ‘m-gram’ only refers to the acoustic

context but not the acoustic unit which remains the word. For

example, bigram word templates are word templates that are

preceded by a certain word. M -gram word templates are the

same as m-gram word unit templates except that they “pinch”

the search space for DTW at the word boundaries and thus, do

not increase the complexity compared to word templates. In

particular for short words, they may be helpful to take account

of co-articulation effects.

There are two good reasons for using word template fea-

tures. First, they can span a longer acoustic context than

conventional triphones. This may be helpful, in particular in

combination with large amounts of data. Second, this choice

helps to structure the search space for DTW. This is an essen-

tial issue if dealing with thousands of hours of data and prob-

ably is a natural and simple way to implement search trees.

3. COMBINATION & OPTIMIZATION
The combination of the template features with the first-pass

model is done with a segmental conditional random field

(SCARF) [7]. This is a conditional random field defined on

word lattices. Thus, the training is basically the same as

for lattice-based discriminative training of HMMs, see for

example [9].

The features of the conditional random field are defined

on the word arc level, see Section 2 for examples. In addi-

tion to the template features, the language and acoustic model

scores are used as features. This guarantees that the rescored

model performs no worse than the first-pass baseline model.

The optimal model weights are determined by a posteri-
ori estimation using a Gaussian and a Laplace prior [10]. The

resulting training criterion is also known as maximum mu-

tual information (MMI) with �2- and �1-regularization. �1-

regularization is used for implicit feature selection. This is

helpful because only a small fraction of the millions of tem-

plate features are expected to carry additional information.

The optimization is done with the general-purpose algorithms

L-BFGS or Rprop.

4. EXPERIMENTAL RESULTS
The template features are evaluated on the Voice Search and

the YouTube audio transcription tasks, both for US English.
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Table 1. Training data statistics for Voice Search and

YouTube.
Task [h] #utterances #words supervised

Voice Search 3k 3.3M 11.2M 60%

YouTube 4k 4.4M 40M 0%

4.1. Tasks & Data
The training data for Voice Search consist of supervised and

unsupervised data. Roughly half of the training data are su-

pervised, see Table 1. The transcriptions for the unsupervised

data were generated by decoding using the first-pass model

trained on the supervised portion of the data. Only utterances

with an n-best list containing the oracle are used for training.

The training data for YouTube are all unsupervised, see

Table 1. The transcriptions are obtained by synchronizing the

transcriptions the users uploaded with the audio data. There

is some heuristics to filter out utterances with a bad transcrip-

tion. All utterances are used for training. To avoid problems

with vanishing probabilities in MMI, the reference is set to

the hypothesis in the lattice with the lowest edit cost. The or-

acle word error rate is 29%, compared to 45% for the single

best.

All word hypotheses from the reference are taken as tem-

plates but not more than 5k (random) templates per word.

This is a rather conservative threshold and mainly helps the

top words not to have millions of templates. In case of

YouTube, we only select from the word hypotheses in the

reference that align with the transcription with zero edit cost.

Due to the high oracle error rate, this reduces the number of

templates significantly. As expected, this filtering seems to

be important for the “1 feature / word” but not so much for

the “1 feature / template” approach, see Section 2. For bet-

ter comparison, however, we use the same filtered templates

for all experiments. With this template selection, we have

roughly 4M out of 10M training tokens for Voice Search and

up to 20M out of 40M training tokens for YouTube (of which

20M tokens align with non-zero edit cost). This amounts to

at least 1k hours of templates for either task. The coverage

of the test data by templates is pretty good. 98%/90% (Voice

Search) and 90%/85% (YouTube) of the test data is covered

by 10/100 or more templates.

The first-pass acoustic model is a conventional, discrimi-

natively trained HMM using Gaussian mixtures and PLPs as

the front-end features. The decoding uses a trigram language

model. The vocabulary size for decoding is 1M (of which

100k are seen in the training or test data) for Voice Search

and 127k for YouTube.

4.2. Preliminary Analysis
We analyzed different aspects of the template features de-

scribed in Section 2 for development and tuning. The tem-

plates use the same front-end features as the first-pass acous-

tic model (PLPs). In case of YouTube, they include CM-

LLR. Rprop and L-BFGS were used for optimization of Voice

Table 2. Performance of template features with unigram

language model (LM) in comparison with first-pass acoustic

model (‘AM’) for YouTube.
Features WER [%]

unigram LM + AM 66.1

unigram LM + “1 feature / word” 70.4

unigram LM + “1 feature / template” 63.8

Table 3. “1 feature / word” vs. “1 feature / template” word

template features on top of first-pass model (‘AMLM’).

Features WER [%]

Voice Search YouTube

AMLM 14.7 57.0

+ “1 feature / word” 14.3 56.7

+ “1 feature / template” 14.1 55.9

Search and YouTube, respectively.

Quality of template features. To gauge the template fea-

tures in comparison with the first-pass acoustic model, mod-

els with only the first-pass acoustic model score or the tem-

plate features are trained. To reduce the effect of implicitly

training unigram contexts in case of template features, the un-

igram language model score is added. Note that around 10%

of the test data are not covered by word templates and thus,

are likely to be misclassified. The results in Table 2 suggest

that the template features are competitive with the first-pass

acoustic model within our rescoring approach.

“1 feature / word” vs. “1 feature / template.” Table 3

compares the “1 feature / word” and the “1 feature / template”

approach. The “1 feature / template” approach seems to out-

perform the “1 feature / word” approach, see also Table 2.

The reason for this may be that the “1 feature / template” ap-

proach is able to learn the relevance of each template and is

less sensitive to erroneous data.

Effect of data sharpening. Data sharpening is a prepro-

cessing step known from the k-nearest neighbors (kNN) ap-

proach. It is used for outlier correction. In our case, the data

sharpening replaces the frame-features with the average over

the k-nearest features aligned to the same triphone. Triphones

are chosen mainly to make the underlying kNN problem fea-

sible. These features are then used for the templates. Sub-

stantial gains were shown from data sharpening for exemplar-

based speech recognition [2]. However, it is not obvious if

this technique is also effective in our combination approach

and for large amounts of data. Table 4 summarizes the com-

parative results. There is a clear gain if we do kNN on the

segmented words and only consider reference hypotheses that

are in the lattice (‘kNN, with oracle’). However, this gain

appears less optimistic in the context of all word hypotheses

(‘kNN, all’) and almost completely vanishes after the combi-

nation with the first-pass model.

Bigram word templates. By default, the maximum number

of templates per word is set to 5k. This value for the threshold
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Table 4. Effect of data sharpening under different conditions

for YouTube.
WER [%]

data sharpening

Setup no yes

kNN, with oracle 26.1 20.4

all 62.4 59.5

AMLM + “1 feature / template” 56.4 55.9

Table 5. Unigram vs. bigram word template features for

YouTube, on top of first-pass model (‘AMLM’).

Features WER [%]

AMLM + “1 feature / template” (unigram) 55.9

AMLM + “1 feature / template” (bigram) 55.0

makes the computation reasonably efficient. However, does

this also imply optimal performance? Internal tests suggest

that increasing the number of templates per word does not

help. Increasing the acoustic context appears to be a more

attractive approach to use more data (doubles the amount of

templates to 2k hours), without substantially increasing the

complexity. In addition, bigram word templates increase the

acoustic context and take into account co-articulation effects

to some degree. This is expected to be useful for YouTube

where short words dominate: the ten most frequent words are

‘the’, ‘to’, ‘and’, ‘a’, ‘you’, ‘of’, ‘that’, ‘is’, ‘in’, ‘it’, and

make up one third of the seen words. The results are shown

in Table 5.

4.3. Combination Results for Template Features
Table 6 shows the combination results for the template fea-

tures. The results are on top of an MMI-trained first-pass

model, which reduces the gain by the effect of discrimina-

tive training. The observed gains are modest for Voice Search

and small for YouTube. Voice Search probably performs bet-

ter because a substantial portion of the training data is super-

vised whereas there is no supervised training data available

for YouTube.

Interestingly, only a few percent of the templates in the

“1 feature / template” approach are active for optimal �1-

regularization. This observation can be used for a simple

speed-up of the rescoring pass by a factor of ten for exam-

ple. This, however, does not affect the training time which

for pre-computed template features, is comparable to that of

conventional MMI training but using roughly ten times more

iterations to converge. Pre-computing the template features is

almost as expensive as the training itself.

Table 6. Template features combined with the first-pass

model (‘AMLM’), unigram word templates for Voice Search

and bigram word templates for YouTube.

Features WER [%]

Voice Search YouTube

AMLM 14.7 57.0

+ “1 feature / template” 14.1 55.0

5. SUMMARY
In this paper, we investigated exemplar-based features for

large-scale speech recognition. These features were com-

bined with the first-pass model using a lattice-based, rescor-

ing approach. Results for up to 20 million word templates

drawn from thousands of hours of unsupervised and noisy

training data were shown. The currently observed gains prob-

ably are insufficient to justify the increased complexity. In

our opinion, the most likely reason for the negative result is

the hard but for many applications realistic data conditions.

More speculations may include the high error rates in case

of YouTube, the MMI baseline that reduces the gain by the

discriminative training, or simply that the template features

are not complimentary enough.
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