
USING A* FOR THE PARALLELIZATION OF SPEECH RECOGNITION SYSTEMS

Patrick Cardinal1,2, Gilles Boulianne1 and Pierre Dumouchel1,2

1Centre de Recherche Informatique de Montréal (CRIM),Montréal, Canada
2École de Technologie Supérieure, Montréal, Canada

Email: {patrick.cardinal,pierre.dumouchel,gilles.boulianne}@crim.ca

ABSTRACT

The speed of modern processors has remained constant over

the last few years but the integration capacity continues to fol-

low Moore’s law and thus, to be scalable, applications must

be parallelized. This paper presents results in using the A*

search algorithm in a large vocabulary speech recognition par-

allel system. This algorithm allows better parallelization over

the Viterbi algorithm. First experiments with a ”unigram ap-

proximation” heuristic resulted in approximatively 8.7 times

less states being explored compared to our classical Viterbi

decoder. The multi-thread implementation of the A* decoder

led to a speed-up factor of 3 over its sequential counterpart .

Index Terms— Speech recognition, A*, parallelization

1. INTRODUCTION

Large vocabulary automatic speech-recognition is a computa-

tionally intensive task. Most speech recognizers run under a

sequential implementation that cannot take advantage of mod-

ern processors with multi-core technology. In order to exploit

this power, a parallel speech recognition system must be im-

plemented.

The two major time consuming components are the acous-

tic likelihood computation and the optimal path search. The

first component takes 30%-70% of total time. This calculation

involves mostly arithmetic operations than can be computed

by a dot product. This allows an efficient implemention in a

SIMD (Single Instruction Multiple Data) parallel architecture

such as SSE registers or a graphic processor (GPU) [1].

The search component consumes most of the remain-

ing time. The classic way to perform the decoding uses the

Viterbi algorithm. This algorithm is simple and straightfor-

ward to implement. It is nonetheless difficult to achieve an

efficient parallelized version of the Viterbi algorithm on a

classical multicore computer. The main reason is that only

1% of the states are active at each frame and these are scat-

tered in memory. This situation adds to the well established

difficulty of having to search a sparse graph on a parallel

architecture of the Intel processor type [2].

A parallel implementation of a speech recognition sys-

tem is presented by Phillips et al. [3]. Their system builds

the transducer on the fly during the decoding process. They

have obtained a performance of 0.8x real-time on a 16 CPU

computer for the North American Business News (NAB)

database. This is a speed-up of 4.87 compared to 3.8x real-

time on a single CPU.

Parihar et al. implement the parallelization of the search

component of a lexical-tree based speech recognizer [4]. In

this work, lexical-tree copies are dynamically distributed

among the cores to ensure a good load balancing. This results

in a speed-up of 2.09 over a serialized version on a Core

i7 quad (4 cores) processor. The speed-up is limited by the

memory architecture.

In [5], Ishikawa et al. implemented a parallel speech

recognition system in a cellphone using a 3-core processor.

The system was divided in 3 steps, one for each core. They

reported a speed-up factor of 2.6 but their approach is not

scalable since involved steps are not easily parallelizable.

This paper presents results of using the A* search algo-

rithm in a large vocabulary speech recognition parallel sys-

tem. This approach has previously been applied to speech

recognition by [7]. It divides the search operation into two

steps. The first step is the computation of a heuristic that

yields an estimate of the cost for reaching the final state from

any given state in the graph. The second step is a best-first

search driven by the heuristic. The advantage of this approach

is that the heuristic can be constructed to allow an efficient

computation in parallel. The search itself is still difficult to

parallelize, but it can be reduced by using a good heuristic

since, in this case, a smaller number of states will be explored.

This paper is organized as follows. Section 2 presents

the A* algorithm and how it is used in the context of speech

recognition. Section 3 presents preliminary experimental re-

sults obtained on a large vocabulary speech recognition task.

2. A* DECODER

Unlike the time synchronous Viterbi algorithm, the A* algo-

rithm is a best-first scheme, that implies a scoring procedure

to explore the most promising states. The score of a state is

Score(q) = g(q, t) + h(q′, t+ 1) + cost(q, q′)

4433978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

where g(q, t) is the score for reaching state q from the

initial one at time t, h is the heuristic score that gives an esti-

mation of the cost for reaching a final state from the adjacent

state q′ at time t+ 1 and cost(q, q′) is the cost for going to q′

from q. A heuristic is said to be admissible if, for every state,

it underestimates the real cost for reaching the final state. In

that case, the A* algorithm is optimal. A pseudocode of the

A* algorithm is shown in Algorithm 1. For simplicity, epsilon

transition handling has not been illustrated in this algorithm.

The input of the algorithm is the HCLG recognition

network composed of HMMs (H), triphone context de-

pendency (C), lexicon (L) and a trigram backoff language

model (G). This network is represented by a WFST =
(Q, i, F,Σi,Σo, E, λ, ρ) where Q is a set of states, i ∈ Q is

the initial state, F ⊆ Q is the set of final states, Σi is the input

alphabet of the automaton (distributions), Σo is the output al-

phabet of the automaton (words), E ⊂ Q×Σi×Σo×R×Q is

the set of transitions, λ : i → R is the initial weight function

and ρ : F → K is the final weight function.

The second input is the heuristic function h : q, t → R

which gives the estimated cost for reaching a final state from

state q at time t.

1 openList← {((i, λ, 0), heuristic(i, 0))}
2 closedList← ∅
3 while openList �= ∅ do
4 // Extract state with lowest score
5 (q, t, g)← openList.Extract()
6 closedList← closedList ∪ (q, t)
7 if q ∈ F and t = numFrames then
8 // Best path found
9 ExitSearch()

10 end
11 foreach (q, σi, σo, w, q

′) ∈ E[q] do
12 if (q′, t+ 1) �∈ closedList then
13 g′ ← g + obsCost(σi, t) + w
14 h← heuristic(q′, t+ 1)
15 entry ← (q′, t+ 1, g′)
16 score← g′ + h
17 openList← openList ∪ {(entry, score)}
18 end
19 end
20 end

Algorithm 1: The A* algorithm

2.1. Unigram Langage Model Heuristic

In our implementation, the heuristic is also represented by

a WFST. The heuristic costs are computed by performing

backward Viterbi decoding. The heuristic FST must be small

enough to allow for an exhaustive search. In our experiments,

it is built with the same models as that of the recognition

network, with the exception that the trigram language model

is replaced by a unigram model derived from the trigram.

The resulting FST is small enough to be exhaustively and

efficiently decoded.

Note that application of the Viterbi algorithm on the

heuristic is simpler and faster than on the recognition net-

work because no backpointers need to be kept to retrace the

best state sequence. Moreover, since all states are explored at

each frame, they reside in contiguous memory locations for

optimal cache usage.

2.2. Mapping Recognition FST States to Heuristic States

Recall that A* search uses the heuristic cost given by the func-

tion h(qr, t), where qr is a recognition FST state. In essence,

this function performs a lookup in the Viterbi treillis com-

puted on the heuristic. Thus, we need to know which state

(qh, t) in the heuristic is equivalent to (qr, t). A mapping be-

tween states of the heuristic and those of the recognition FST

must thus be discovered.

To establish this mapping, we can use the FST composi-

tion as described by Mohri [8]. The inverted (input and out-

put symbols swapped) heuristic FST is composed with the

recognition FST. A state in the composed FST is a pair shr =
(qh, qr) where qh and qr are, respectively, states of the heuris-

tic and recognition FST. The existence of a state (qh, qr) im-

plies that at least one path from ih to qh in the heuristic FST

has the same distribution sequence than a path from ir to qr in

the recognition FST. Since the composed FST is connected,

there is also a path from qh to a final state of the heuristic FST

that has the same distribution sequence than a path from qr to

a final state of the recognition FST. Consequently, both states

are considered to be equivalent. Note that the FST resulting

from the composition is not used, only the list of state pairs is

useful. In addition, this mapping is computed offline.

2.3. Block Processing

Data structures required for implementing A* are more com-

plex than the simple array used in a Viterbi decoder. The

A* algorithm always explores the most promising path first.

For efficiency, paths are stored in a binary heap for which the

three main operations (insertion, extraction and decrease key)

are in O(log n). However, the algorithm needs to know if a

node is already in the heap before inserting it. Since search-

ing a node in a heap is O(n), a hash table is used to keep track

of nodes in the open list. Moreover, since we don’t want to

explore the same node more than one time, we use a closed

list of nodes already explored which is also implemented with

a hash table. For efficiency, there is an open list (hash table)

and a closed list per frame.

In addition to complex data structures, the number of

nodes to explore grows as the square of the number of frames

as is the case with the Viterbi algorithm. To circumvent both

problems, a block approach has been implemented as follows.

4434

The heuristic is first computed for Δ frames. Then, the A*

search is performed on the Λ < Δ first frames. The search

stops when a node at time Λ with a cost (path cost + heuristic

cost) larger than the best cost added to a user value (beam) is

extracted from the open List.

The window is then advanced of Λ frames. The process

is applied until the end of audio is reached. In order to save

computation time, several consecutive searches can be done

with one heuristic computation as shown by Figure 1.

Fig. 1. A* search by block

3. EXPERIMENTATION

3.1. Experimental Setup

The baseline system for comparison is a FST-based speech

recognition system developed at CRIM and tuned for speaker-

independent transcription of broadcast news.

The acoustic model has been trained with 171 hours com-

ing from French television programs in Quebec. The pro-

grams are a mix of weather, news, talk shows, etc. that have

been transcribed manually. The acoustic parameters consist

of 12 MFCCs plus the energy component, corresponding first

and second derivatives, for a total of 39 features. The model

contains 4600 distributions of 32 and 128 Gaussians with di-

agonal covariance matrices.

The language model has been trained with text from a

French local newspaper (La Presse, 93 million words) and the

acoustic training set’s textual transcripts (2.1 million words).

Both the unigram and trigram language models use the same

vocabulary of 59624 words.

The CPU used is a Intel Core i7 quad at 2.9 GHz with

8 GB of RAM. Acoustic computations use the SSE regis-

ters. On the baseline version, required acoustic likelihoods

are computed on-demand. This optimization is not possible

with the A* algorithm since all likelihoods are used for com-

puting the heuristic.

For all experiments involving the A* algorithms, the

heuristic length Δ has been set to 500 frames. A* search is

performed on Λ = 20 frames with a lookahead of 100 frames.

Thus, for each block of heuristic scores, 20 A* searches are

performed.

The test set is made up of 44 minutes (2625 seconds) of

audio with a duration between 32 and 50 seconds.

Computation # of

time explored

Algorithm (seconds) nodes Accuracy

Viterbi 2069 2 459 801 548 68.67 %

A* (1 Thread) 6134 283 041 383 70.01%

A* (4 Threads) 2497 283 041 383 70.01%

Table 1. Viterbi vs A* at real time.

3.2. Comparaison with the Classical Viterbi

Table 1 shows the performance of our A* decoder compared

to the classical Viterbi decoder. The experiment has been

done with 32 Gaussian component distributions.

The main advantage of the Viterbi decoder comes from

the fact that it computes only 29% of all likelihoods since they

are computed on-demand. This allows the Viterbi decoder to

perform very well in real time as shown by the results.

In the case of the A* decoder, results show that the se-

quential implementation is slower than the Viterbi decoder.

This is mainly due to the acoustic likelihood computation

which accounts for 64% of the total time. Recall that all

likelihoods must be computed since they are needed for the

heuristic. The heuristic computation itself accounts for 27%

of the total time.

However, the 4 thread version, with a speed-up of 2.46,

achieves real-time. This performance could be improved if

more thread were available.

Note that the number of explored nodes is about 8.7 times

smaller in the A* decoder. This is the reason why the search

itself account for only 7% of the total computation time.

Figure 2 shows results of a second experiment ran with a

128 Gaussian component acoustic model distribution. In this

scenario, the real-time accuracy of the Viterbi decoder drops

to around 65%, even if only 16% of acoustic likelihoods are

computed, search time has to be limited by a low beam value.

Fig. 2. 128 Gaussian components A* decoder accuracy vs
execution time. Dashed lines are projections.

4435

The A* decoder cannot achieve real time with only 4

threads even with a speed-up of 3 times over its sequential

counterpart. However, projection (represented by dashed

lines) to 8 threads show that real-time can be reached with

an accuracy of 71.62%. With 16 threads real-time accuracy

would be 72.29%.

Note that for an accuracy of 72%, the A* decoder with 4

threads is 2.27 times faster than the Viterbi decoder. It would

be 3.7 and 5.34 times faster with 8 and 16 threads.

3.3. Parallelization of Heuristic Computation

As described earlier, the heuristic computation operates in 2

steps: computation of acoustic likelihoods and computation

of heuristic costs. These steps take more than 91% of the total

search time. Table 2 shows how the computation time can

be decreased by using multi-core architectures. Experiments

have been conducted with 128 Gaussians acoustic models on

the whole test set.

Computation time speed-up

Step 1 thread 4 threads factor

Acoustic likelihoods 10659 sec 2913 sec 3.7x

Heuristic costs 1512 sec 495 sec 3.1x

Table 2. Heuristic computation speed-up.

The first line of Table 2 shows that computation of acous-

tic likelihoods parallelizes very well in a multicore processor

with a speed-up approaching the theorical maximum of N,

where N is the number of cores.

Note that this parallelization could also be applied in the

classical Viterbi decoder. However, the improvement will not

be as significant since likelihoods are computed on-demand

and only a subset of the distributions are used.

Heuristic costs are computed by applying the Viterbi algo-

rithm on the reversed heuristic FST and starting from the last

frame. Note that epsilon transition expansions, which take ap-

proximatively 8.5% of the Viterbi computation time, are not

parallelized.

We believe that the theorical maximum is not being

reached on this part because of a misuse of the memory

architecture, and that an optimisation of the data structures

will enhance performances on multicore processors.

4. CONCLUSION

This paper presented our current work on the parallelization

of speech recognition systems using the A* algorithm. A

WFST constructed from a unigram provides an admissible

and efficient heuristic making the number of explored states

by the A* algorithm 8.7 times smaller compared to the Viterbi

algorithm in a real-time scenario. The A* search itself takes

less than 7% of the total computation time.

Results also show that using 4 cores in a multi-threaded

implementation of the heuristic computation led to an overall

speed-up factor of 3. The first and more time consuming step

is the computation of acoustic likelihoods which paralleliza-

tion reduced by a factor of 3.7. Computation of heuristic costs

was only reduced by a factor of 3, but better reductions should

be possible with better data structures.

We are confident that our approach will be very useful

when computers with 16 or 32 cores will become available in

few years. A* decoding approach is able to take advantage

of multiple core processors and is scalable to any number of

cores. This will allow speech recognition systems to use all

the computational power of 16 or 32 core computers as they

will become available in a few years.

5. REFERENCES

[1] P. Cardinal, P. Dumouchel, and G. Boulianne, “Parallel

Architectures in Speech Recognition,” In proceedings of
Interspeech, 2009.

[2] A.Lumsdaine, D. Gregor, B. Hendrickson, and J. W.

Berry, “Challenges in Parallel Graph Processing,” Paral-
lel Processing Letters, pp. 5–20, 2007.

[3] S. Phillips and A. Roggers, “Parallel speech recognition,”

International Journal of Parallel Programming, 1999.

[4] N. Parihar, R. Schluter, D. Rybach, and E. A. Hansen,

“Parallel Lexical-tree Based LVCSR on Multi-core Pro-

cessors,” In proceedings of Interspeech, 2010.

[5] S. Ishikawa, K. Yamabana, R. Isotani, and A. Oku-

mura, “Parallel LVCSR Algorithm for Cellphone-

Oriented Multicore Processors,” in The IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, 2006.

[6] J. Chong, E. Gonina, K. You, and K. Keutzer, “Explor-

ing Recognition Network Representations for Efficient

Speech Inference on Highly Parallel Platforms,” In pro-
ceedings of Interspeech, 2010.

[7] P. Kenny, R. Hollan, G. Boulianne, H. Garudadri,

M. Lennig, and D. O’Shaugnessy, “An A* Algorithm

for Very Large Locabulary Continuous Speech Recogni-

tion,” in The IEEE International Conference on Acous-
tics, Speech and Signal Processing, 1992, vol. 1.

[8] M. Mohri, F.C.N. Pereira, and M. Riley, “Weighted finite-

state transducers in speech recognition,” in Proceedings
of the ISCA Tutorial and Research Workshop, Automatic
Speech Recognition: Challenges for the new Millenium
(ASR2000), 2000.

4436

