
JOINING ADVANTAGES OF WORD-CONDITIONED AND TOKEN-PASSING DECODING
David Nolden, David Rybach, Ralf Schlüter, Hermann Ney
Chair of Computer Science 6, RWTH Aachen University

Ahornstr. 55
D-52056 Aachen, Germany

{nolden, rybach, schlueter, ney}@cs.rwth-aachen.de

ABSTRACT

We compare the families of token-passing and word condi-
tioned decoders, and derive a more efficient dynamic decoder.
The advantage of the word conditioned approach is a trivially
simple hypothesis recombination, while the advantage of the
token-passing approach is a straight-forward minimization of
the search network with compressed word tails. We derive a
dynamic decoder which joins the advantages of both decod-
ing architectures by minimizing the search network of a word
conditioned decoder. We describe the decoder and analyze its
efficiency regarding acoustic look-ahead, network minimiza-
tion, and facilitated pruning methods. Finally, we compare
the new decoder with a WFST based decoder extended by
acoustic look-ahead.

Index Terms— LVCSR, search, decoding, word con-
ditioned, tree-search, token-passing, WFST, pruning, mini-
mization, acoustic look-ahead

1. INTRODUCTION
In dynamic network decoders, the language model (LM) and
acoustic model (AM) are combined dynamically. The acous-
tic model is used to build a compact HMM search network
representing all words in the vocabulary, and the LM depen-
dencies are maintained by appropriate management of state
hypotheses [1].

Static decoders on the other hand, usually based on the
weighted finite state transducer (WFST) approach [2], com-
bine the AM and LM statically by constructing one huge
search network integrating both models.

WFST based decoders are popular because the static inte-
gration of knowledge sources allows shifting some effort from
the runtime to a preprocessing step, most importantly the cal-
culation of LM- and look-ahead scores. However the prepro-
cessing is very expensive for large models, and the resulting
static search network takes a huge amount of memory. Alter-
natively only the encountered parts of the search network can
be expanded on-demand [3], which neutralizes a part of the
runtime efficiency advantage though. The search network of
WFST decoders is usually only expanded up to the allophone
level, therefore an additional expansion from allophones to
HMM states is required while decoding, and the state recom-
bination is suboptimal.

For these reasons, dynamic network decoding stays an in-
teresting approach. The authors of [4] have shown that a well-
crafted dynamic network decoder based on token-passing is
competitive with WFST decoders regarding runtime when
large LMs are used. Meanwhile the weakness of dynamic de-
coders regarding LM look-ahead was further compensated [5]
and extended acoustic look-ahead was introduced [6], both

This work was partly realized under the Quaero Programme, funded by
OSEO, French State agency for innovation.

of which further boost the efficiency of dynamic network
decoders.

State-of-the-art dynamic decoders are typically divided
into two families with slight differences: Token-passing de-
coders [7] [4] and word conditioned decoders [1]. Both are
theoretically equivalent regarding the search space, but have
different implications regarding the efficiency.

In token-passing decoders state hypotheses are grouped
by their network-state. This allows straight-forward mini-
mization of the search network with compressed word tails,
which leads to a much smaller search network, an earlier
recombination of state hypotheses, and less effort handling
word-ends, all of which increases the efficiency. The recom-
bination of hypotheses is difficult though and an additional
pruning is required to make the recombination efficient.

In word-conditioned decoders state hypotheses are grouped
by their LM context. This allows very efficient hypothesis
recombination, but the minimization of the search network is
difficult.

In this work we try to join the advantages of both ap-
proaches into one decoder. In Section 2 we compare both
decoding architectures, in Section 3 we describe the new de-
coder, and in Section 4 we analyze it experimentally, compar-
ing it with the WFST approach.

2. COMPARISON OF TOKEN-PASSING AND WORD
CONDITIONED SEARCH

In token-passing decoders, a list of state hypotheses (tokens)
with equal network state but different LM contexts is attached
to each state of the search network.

In word conditioned decoders, virtual copies of the search
network are created for each encountered LM context, and a
list of state hypotheses with equal LM context but different
network states is attached to each copy.

Let (h, s, q) be an active state hypothesis with LM context
h, network state s and probability q. The fundamental differ-
ence between token-passing and word conditioned decoders
is: In a token-passing decoder, state hypotheses are grouped
by equal network state s, while in a word conditioned de-
coder, state hypotheses are grouped by equal LM context h.
This storage layout leads to different implications regarding
efficiency.

Table 1 shows a quick comparison of the practical advan-
tages and disadvantages, explained in the following sections.

2.1. State Hypothesis Recombination
During decoding, when two state hypotheses (h, s, q) and
(h′, s′, q′) share the same LM context h = h′ and network
state s = s′, then the state hypothesis with the lower proba-
bility q is discarded, according to the Viterbi approximation.
Hence, the decoder needs to match hypotheses with equal
LM context and state.

4425978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

Table 1. Overview of advantages (+) and disadvantages (-).

Word Conditioned Token-Passing
State hypothesis recombination
+Trivial −Tricky

Search network minimization
− No +Yes

LM state pruning (requires minimization)
+Not required −Required
−Not effective +Effective

In word conditioned decoders all state hypotheses with
equal LM context are grouped together within one virtual net-
work copy. To perform recombination, all state hypotheses
within the network copy which share the same state s need
to be identified. Since the number of states S is typically
not too high, the matching can be performed very efficiently
network-copy wise using a simple table of size S. The costs
of table lookups are negligible if the state indices are sorted
topologically, due to the CPU cache.

In token-passing decoders hypotheses are grouped by
their state s, and during recombination, the hypotheses as-
signed to one state s which share the same LM context h
need to be matched. If the LM and vocabulary are large,
the number of possible contexts h is huge, and sophisticated
data-structures or algorithms are required to perform the
matching of equal contexts, for example hash-structures or
heaps. Therefore it is critical to keep the number of hypothe-
ses assigned to one state low using LM state pruning. In [4] a
simple linear search is used to perform the matching, which
is more efficient than sophisticated structures if the number
of hypotheses on states is very low.

2.2. Search Network Minimization
The search network of token-passing decoders is typically
minimized by pushing word labels from the end into the body
of the network and by compressing the suffixes. Thereby the
size of the network and the number of word-end labels at-
tached to the network is greatly reduced, the runtime effort of
word-end handling is reduced, and full LM scores are applied
earlier leading to more precise pruning. Furthermore differ-
ent search paths start overlapping already before the physi-
cal word ends are reached, which leads to earlier recombi-
nation and effective pruning of overlapping paths using LM
state pruning.

Classical word conditioned decoders do not minimize the
search network.

3. DECODER
A decoder which joins the advantages of token-passing de-
coders and word conditioned decoders (see Table 1) needs
the following attributes: Trivial recombination of state hy-
potheses, a minimized search network, and LM state pruning
is possible, efficient and effective but not mandatory.

We start with our word conditioned decoder to leverage
the efficient hypothesis recombination. Full order LM look-
ahead is integrated efficiently by exploiting the sparseness of
backing-off n-gram LMs [5], and acoustic look-ahead is used
to focus the search regarding future acoustic observations [6].

3.1. Search Network Structure
The normal tree-like HMM search network can be split into
three parts: A minimized fan-in which models the across-
word coarticulation at word starts, a tree-like body follow-

ing the fan-in, and a coarticulated tree-like fan-out before the
word ends. If the phonetical context-dependency is limited
to two neighbor phonemes (triphones) as in our decoder, then
the fan-in ends after the first phoneme, and the fan-out starts
one phoneme before the word ends (see Figure 1a). The net-
work is expanded and compressed up to the HMM state level
(Figure 1 shows only the allophone arcs as a simplification).

At the end of the fan-out, there is one word end label for
each word and for each possible successor phoneme. Each
word end label is annotated with the matching coarticulated
root state where the acoustic search path continues. Any num-
ber of labels may be attached to one HMM state. The overall
size of the fan-out is linear in the size of the vocabulary and
the number of phonemes, thus the fan-out can dominate the
whole search network when large vocabularies are used.

3.2. Search Network Minimization
The fan-out can be minimized by pushing the word end labels
before the fan-out, moving their fan-out suffix into a new min-
imized fan-out structure prepended before the fan-in, and in-
serting new special roots before the minimized fan-out struc-
ture (see Figure 1b). The resulting search network is equiva-
lent, but contains only one word end label for each word, and
the whole fan-out is minimized. For true minimization of the
whole search network, the word end labels could be pushed
further into the body, however we expect no further signifi-
cant improvement (according to [4] only the minimization of
the fan-out is worthy regarding runtime efficiency).

a, a

#

a, b

b, b

b, a

Roots

F
a
n
-I
n

F
a
n
-O

u
t

B
o
d
y

bbb

aaa

abb

#
b
b

baa

a a
a

a
aa

aa#

aa
b

#
aa

b
ba

bb#

b b
b

b
b b Bb,b

B#

Bb,a

Aa,b

A#

Aa,a

Word Ends

(a) Normal

a, b

b, a

F
a
n
-I
n

B
o
d
y

bbb

aaa

abb

#
b
b

baa

a a
a

#
aa

b
b b

b, b

a, a

a
aa

aa
#

b
ba

b
b#

b b
b

A+a,a

B+b,b

+a, a

+b, b

#

a a
b

Special Roots Roots

F
a
n
-O

u
t

Word Ends

(b) Transformed

Fig. 1. Suffix-sharing transformation of the search network
demonstrated with 2 words A and B and 2 phonemes a and b
(with pronunciations A = aaa and B = bbb).

Such a minimization leads to all advantages of token-
passing decoders enumerated in Subsection 2.2, but also
introduces some problems which need to be worked around.

The transformed network is equivalent regarding the prob-
abilities assigned to whole search paths, but when lattices are
created, exact partial probabilities and time-marks may be re-
quired for individual words in the lattice. Word end labels
are now encountered one phoneme before the physical word
end, thus the tracebacks are annotated with time-marks and
probabilities shifted by one recognized phoneme. We correct
the lattices by checking when exactly each traceback crosses
from the fan-out into the fan-in for the first time, and updat-
ing the time- and score marks accordingly (this works without
measurable overhead).

4426

A further problem arises from the earlier emission of word
ends: More different LM contexts are encountered, and thus
more LM look-ahead tables are required. We circumvent this
problem by using only unigram look-ahead as long as the fan-
in of a network copy was not entered (this measure improves
the efficiency by approximately 4%).

3.3. Pruning
The most important pruning method is the global acoustic
pruning: At each timeframe, all state hypotheses which have
a lower probability than the best one multiplied by a specific
pruning threshold are discarded.

Since very effective look-ahead knowledge sources are
available (regarding LM as well as AM), an additional acous-
tic pruning step using the same threshold is perfomed after
expanding the HMM states, but before computing acoustic
scores (we call this early acoustic pruning), to prevent expen-
sive acoustic score calculations.

Whenever a word end label is encountered during decod-
ing, a word end hypothesis is created and the matching coar-
ticulated root state with extended LM context is activated.
Since new LM look-ahead tables need to be initialized for
each new unique LM context, it is very important to keep the
number of word end hypotheses low. Therefore, word end hy-
potheses are pruned at each timeframe by discarding all word
end hypotheses which have a probability lower than the best
one multiplied by a specific pruning threshold [1] (we call this
word end pruning).

Additionally to acoustic pruning and word end pruning,
histogram pruning is used to limit the absolute number of
state- and word-end hypotheses that appear at each time-
frame. This pruning variant is mainly required to cut off
peaks in situations of high uncertainty, and does not play a
significant role regarding the runtime efficiency.

Typically a significant amount of time is spent handling
word end hypotheses (looking up LM scores, extending trace-
backs, LM recombination, pruning, etc). We showed in [8]
that preventing transitions into word starts at a specific frac-
tion of all timeframes does not increase the WER. We transfer
this concept into the word conditioned decoder by only han-
dling word ends at each ith timeframe (we call this word end
interval).

3.4. LM State Pruning
LM state pruning as known from token-passing decoders can
be integrated efficiently by using a single table of size S, and
two runs over all active state hypotheses: In the first pass, the
table is used to store the highest probability for each network
state. In the second run, all state hypotheses are discarded
which have a lower probability than the stored best one in the
same network state multiplied by a specific pruning threshold.

4. EXPERIMENTAL RESULTS
We perform our experiments on the first speaker-independent
pass of the RWTH Aachen Quaero English ASR system [9].
The lexicon comprises 158k words with 180k pronunciations,
modeled by 45 phonemes and 6 non-speech phones, and the
4-gram LM is composed of 50M n-grams. The acoustic
model comprises 4501 Gaussian mixture models with a glob-
ally tied covariance matrix and 1M mixture densities. The
test corpus consists of 1482 segments with a duration of 3.4h
and about 36k spoken words.

The acoustic scores are computed efficiently using quan-
tized features, temporal batching, and Gaussian preselection.

The Gaussian densities are clustered into 256 clusters and at
each timeframe only the closest 32 clusters are considered
(batching and preselection together reduce the effort of acous-
tic scoring to approximately one third at equal error rate).

The WFST decoder used for comparison was introduced
in [10] and significantly outperformed the old dynamic net-
work decoder on smaller tasks. It is based on OpenFST and
combines the C ◦ L and G transducers dynamically, and is
well-tuned for the Quaero English system.

Real time factors (RTF) were measured on a 8-core AMD
Opteron 4130 machine with 2.6Ghz and 32GB of memory
(without parallelization).

4.1. Minimization
The classical search network consists of 7.8M HMM states
and 8.1M word-end labels, and takes about 160MB of mem-
ory. By minimization, the search network is reduced to 1M
HMM states and 267k word-end labels, taking about 12MB
of memory.

4.2. LM State Pruning
We intensively tested the potential effect of LM state pruning
in conjunction with a minimized search network. If word end
pruning is fixed to some suboptimal value, then the LM state
pruning can achieve a slight efficiency improvement. How-
ever if we choose the optimal word end pruning threshold,
then we achieve no significant improvement by the additional
LM state pruning.

Since word ends are placed right before the fan-out in our
decoder, only few paths actually reach the fan-out due to word
end pruning. LM state pruning however shows most of its
effect in the fan-out, where many different acoustic paths join.

4.3. Pruning Comparison
Table 2 shows the efficiency of the decoder in different con-
figurations, with full acoustic look-ahead. The minimization
of the search network leads to an improvement of about 5
to 10% in RTF at equal WER in comparison to the tree-like
search network. When adding early acoustic pruning, another
10 to 20% are achieved. By further adding a word end inter-
val of 2, the efficiency is again improved, however mainly for
high pruning thresholds and low error rates.

For each acoustic pruning threshold, the optimal word end
pruning threshold was chosen beforehand by testing all rel-
evant combinations on a similar dev-corpus and selecting a
flattened pareto-frontier regarding RTF and WER.

 21

 21.5

 22

 22.5

 23

 0.4 0.6 0.8 1 1.2 1.4 1.6

W
E

R

RTF

Tree
Min.

+Early
+Interval

Fig. 2. Varied acoustic pruning and word end pruning.

4427

Table 2 shows the decoder statistics for fixed pruning
thresholds very close to the optimum. Less word ends are
encountered in the minimized search network, but still more
new LM look-ahead tables need to be computed, because the
word ends were pushed by one phoneme towards the roots,
and thus potentially different words are hypothesized more
frequently.

Table 2. Decoding statistics (per timeframe after pruning).
Tree Min. +Early +Interval

RTF 1.52 1.34 1.13 1.03
WER 20.8% 20.9% 20.9% 20.8 %
States 9.7k 8k 7.8k 7.3k
Word Ends 1300 843 838 402
Look-Ahead Tables 1.8 1.98 1.98 1.82

4.4. Profiling
Table 3 shows the profiling of the decoder for the same prun-
ing thresholds used for the decoder statistics. By applying
minimization, basically every single component becomes
more efficient. The most significant reduction is achieved in
the computation of LM look-ahead tables, probably because
the size of the compressed LM look-ahead network is reduced
from 304k to 221k nodes. The costs of computing LM look-
ahead tables are relatively low, which shows that the limits of
the sparse LM look-ahead regarding vocabulary- and LM size
are far from being reached. The Apply Look-Ahead compo-
nent accounts for look-up of acoustic look-ahead scores, LM
look-ahead scores, and eventually transferring state hypothe-
ses into back-off trees according to sparse LM look-ahead
[5]. The costs of the Viterbi search include expansion and
recombination of state hypotheses. The costs of reading LM
scores are contained in the Word Ends component.

Table 3. Profiling.

Tree Min. +Early +Interval

RTF 1.52 1.34 1.13 1.03

Acoustic Scorer 0.7 0.64 0.43 0.42
Look-Ahead Tables 0.19 0.12 0.12 0.12
Apply Look-Ahead 0.2 0.19 0.19 0.17
Viterbi 0.23 0.2 0.2 0.18
Word Ends 0.16 0.15 0.15 0.08
Other 0.14 0.04 0.04 0.06

4.5. Acoustic Look-Ahead and WFST Search
We have integrated the temporally approximated acoustic
look-ahead as proposed in [6] into our WFST based dynamic
decoder, the model-based approximation is more difficult to
integrate efficiently.

Figure 3 shows a comparison between the best perform-
ing configuration of the dynamic decoder and the WFST de-
coder regarding RTF and WER with and without acoustic
look-ahead. Both decoders perform similarly without acous-
tic look-ahead, and achieve an improvement of 10 to 20%
in RTF at equal WER through temporal acoustic look-ahead.
The dynamic decoder profits more from the look-ahead than
the WFST decoder. The model-approximated acoustic look-
ahead gives the dynamic decoder a significant lead, further
improving the efficiency by approximately 10%.

 21

 21.5

 22

 22.5

 23

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
E

R

RTF

WFST
Dynamic

WFST+Temporal
Dynamic+Temporal

Dynamic+Temporal+Model

Fig. 3. Efficiency of the dynamic decoder vs. WFST decoder
with and without acoustic look-ahead.

5. CONCLUSIONS
Our new decoder joins the advantages of token-passing and
word conditioned decoders. The decoder exploits minimiza-
tion of the search network, but it does not require LM state
pruning. The recombination of state hypotheses using a table
is simpler and more efficient than the LM context matching
required in token-passing decoders.

Without acoustic look-ahead, our new dynamic decoder
and our WFST based decoder perform very similarly on our
test task regarding runtime and precision. The efficiency of
the WFST decoder was improved by temporal acoustic look-
ahead, but the dynamic network decoder gained more, espe-
cially when adding the model-based look-ahead.

WFST decoders and modern dynamic decoders are simi-
larly efficient. The disadvantage of the WFST decoder is that
it potentially requires more memory to manage the search net-
work, while the disadvantage of the dynamic decoder is that
there are more tunable decoder parameters affecting the effi-
ciency.

6. REFERENCES
[1] H. Ney and S. Ortmanns, “Progress in dynamic programming search

for lvcsr,” in Proceedings of the IEEE, Barcelona, Spain, August 2000,
vol. 88, pp. 1224 – 1240.

[2] M. Mohri, F. Pereira, and M. Riley, “Speech recognition with weighted
finite state transducers,” in Handbook of Speech Processing. 2008, pp.
559–582, Springer.

[3] C. Allauzen, M. Riley, and M. Mohri, “A generalized composition al-
gorithm for weighted finite-state transducers,” in Interspeech, Brighton,
U.K., September 2009, pp. 1203 – 1206.

[4] H. Soltau and G. Saon, “Dynamic network decoding revisited,” in
ASRU, 2009.

[5] D. Nolden, H. Ney, and R. Schlüter, “Exploiting sparseness of backing-
off language models for efficient look-ahead in lvcsr,” in ICASSP,
Prague, Czech Republic, May 2011.

[6] D. Nolden, R. Schlüter, and H. Ney, “Acoustic look-ahead for more
efficient decoding in lvcsr,” in Interspeech, Florence, Italy, August
2011.

[7] S. J. Young, N. H. Russell, and J. H. S. Thornton, “Token passing: a
simple conceptual model for connected speech recognition,” in Tech.
Report, Cambridge University Engineering Department, 1989.

[8] D. Nolden, H. Ney, and R. Schlüter, “Time conditioned search in au-
tomatic speech recognition reconsidered,” in Interspeech, Makuhari,
Japan, September 2010.

[9] M. Sundermeyer, M. Nußbaum-Thom, S. Wiesler, C. Plahl, A. El-
Desoky Mousa, S. Hahn, D. Nolden, R. Schlüter, and H. Ney, “The
rwth 2010 quaero asr evaluation system for english, french, and ger-
man,” in ICASSP, Prague, Czech Republic, May 2011, pp. 2212–2215.

[10] David Rybach, Ralf Schlüter, and Hermann Ney, “A comparative anal-
ysis of dynamic network decoding,” in ICASSP.

4428

