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ABSTRACT

Recently, we developed context-dependent deep neural network
(DNN) hidden Markov models for large vocabulary speech recogni-
tion. While reducing errors by 33% compared to its discriminatively
trained Gaussian-mixture counterpart on the switchboard benchmark
task, DNN requires much more parameters. In this paper, we report
our recent work on DNN for improved generalization, model size,
and computation speed by exploiting parameter sparseness. We for-
mulate the goal of enforcing sparseness as soft regularization and
convex constraint optimization problems, and propose solutions un-
der the stochastic gradient ascent setting. We also propose novel
data structures to exploit the random sparseness patterns to reduce
model size and computation time. The proposed solutions have been
evaluated on the voice-search and switchboard datasets. They have
decreased the number of nonzero connections to one third while re-
ducing the error rate by 0.2-0.3% over the fully connected model on
both datasets. The nonzero connections have been further reduced to
only 12% and 19% on the two respective datasets without sacrificing
speech recognition performance. Under these conditions we can re-
duce the model size to 18% and 29%, and computation to 14% and
23%, respectively, on these two datasets.

Index Terms— speech recognition, deep belief networks, deep
neural networks, sparseness

1. INTRODUCTION

Recently, we have witnessed the resurrection of artificial neural net-
work (NN) hidden Markov model (HMM) hybrid systems for speech
recognition. This mainly attributes to the discovery of the strong
modeling ability of deep neural networks (DNNs1) and the availabil-
ity of high-speed general purpose graphical processing units (GPG-
PUs) for training DNNs. A notable advance is the context-dependent
DNN-HMMs (CD-DNN-HMMs) in which DNNs directly model the
senones (i.e., tied CD phone states) and approximate their emission
probabilities in HMM speech recognizers [1].

CD-DNN-HMMs have been shown to be highly promising.
They have achieved 16% [1] and 33% [2,3] relative recognition error
reduction over strong, discriminatively trained CD-GMM (Gaussian
mixture model)-HMMs, respectively, on a voice search (VS) task [4]
and the switchboard (SWB) phone-call transcription task [5].

Unfortunately, CD-DNN-HMMs use much more parameters
than the corresponding CD-GMM-HMMs due to the large number
of layers used in DNNs and the direct modeling of as many as 20,000

1We define DNNs as multi-layer perceptrons (MLPs) with many more
hidden layers than used before. DNNs are more difficult to train and may
benefit from procedures such as deep belief network (DBN) pretraining.

or more senones to achieve high recognition accuracy. In addition,
the lower layers in DNNs are shared across all the states and need to
be computed even if only one state is active in the search path. It is
thus of practical importance to reduce the DNN model size so that
fast computation can be possible and better generalization can be
achieved. In this paper we attack this problem by exploiting param-
eter sparseness and formulating the task of enforcing sparseness as
soft regularization and convex constraint optimization problems. We
compare the performance under the stochastic gradient ascent (SGA)
setting, which, to our best knowledge, is the only scalable training
procedure for DNNs at present. We further propose data structures
to exploit the seemingly random sparseness patterns to save storage
and to speed up decoding.

2. CD-DNN-HMM

The CD-DNN-HMM combines the discriminative modeling power
of DNN with the sequential modeling power of HMM. The basic
idea behind CD-DNN-HMMs has been known since 1990s [6]. CD-
DNN-HMMs differ from previous work in that they directly model
tied CD phone states and do so using DNNs. Empirical evaluation
[1,2] indicated that both these two aspects are critical for CD-DNN-
HMMs to outperform the speaker-independent state-of-the-art CD-
GMM-HMMs on large vocabulary speech recognition tasks.

A DNN models the posterior probability Ps|o(s|o) of a class s
given an observation vector o, as a stack of (L + 1) layers of log-
linear models. The first L layers, � = 0...L − 1, model hidden
binary units h� given input vectors v� as Bernoulli distribution
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and the top layer L models the class posterior as multinomial distri-
bution
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where z�(v�) = (W �)T v� + a� is the activation at layer �, W � and
a� are the weight matrices and bias vectors at layer �, and h�

j and

z�j(v
�) are the j-th component of h� and z�(v�), respectively.
The precise modeling of Ps|o(s|o) is infeasible as it requires in-

tegration over all possible values of h� across all layers. An effective
practical trick is to replace the marginalization with the “mean-field
approximation” [7]. Given observation o, we set v0 = o and choose
conditional expectation E�

h|v{h�|v�} = σ
(
z�(v�)

)
as input v�+1 to

the next layer, where σj(z) = 1/(1+ e−zj ) is the sigmoid function.
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Given T training samples o(t) and the associated ground-truth
labels s(t), DNNs are often trained to maximize the total log condi-
tional probability

D =
T∑

t=1

logPs|o(s|o), (3)

The only feasible procedure to train DNNs on a large amount of
training samples so far is the error back-propagation (BP) procedure
with stochastic gradient ascent (SGA). In its basic form,
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where the error signals eL = (log softmax)′(zL(vL)), e�−1 =
W � · ω� · e�, and ω� = diag

(
σ′(z�(v�)

)
if 0 ≤ � < L, ω� =

1, otherwise, the component-wise derivatives σ′
j(z) = σj(z) ·(1−

σj(z)), (log softmax)′j(z) = δs(t),j − softmaxj(z), and δ is Kro-
necker delta.

DNNs are more difficult to converge to good solutions and com-
putationally more demanding to train than the shallow MLPs. It
is only recently that training DNNs has become feasible, with the
easy access to high-speed GPGPUs and the discovery of effective
weight initialization techniques, in particular “deep belief network”
pretraining [8]. The detailed steps on training a CD-DNN-HMM
system can be found in [1].

3. EXPLOITING SPARSENESS

It is our experience that recognition accuracy of CD-DNN-HMMs
typically increases with the number of hidden units and layers, as
long as the training process is controlled by a held-out set. For ex-
ample, in the SWB task, we continue to see small but consistent
accuracy improvement even with 9 hidden layers [2]. Resulting op-
timal models, however, are large. As shown in Section 4, the CD-
DNN-HMMs trained using 24 hours of VS data and 300 hours of
SWB data have 19 and 45 million parameters, respectively. They
each correspond to 12 and 2 times the size of the corresponding tra-
ditional CD-GMM-HMMs.

Fortunately, inspection of fully connected DNNs after the train-
ing has shown that a large portion of all connections have very small
weights. Fig. 1 illustrates the distribution of weight magnitudes of a
typical 7-hidden-layer DNN. In this specific example, the magnitude
of 70% of weights is below 0.1. This inspired us to reduce model
size by removing connections with small weight magnitude so that
we can work with deeper and wider DNNs more effectively. Note
that we did not observe similar patterns on bias parameters. This is
expected since nonzero bias terms indicate the shift of hyperplanes
from the origin. Since the number of bias parameters is very small
compared to that of weight parameters, keeping bias parameters in-
tact does not affect the final model size in a noticeable way.

The task of enforcing sparseness can be formulated as a multi-
objective optimization problem since we want to maximize the log
conditional probability D and minimize the number of nonzero
weights at the same time. This two-objective optimization problem
can be converted into a single objective optimization problem with
soft regularization and convex constraint formulations. Note that re-
searchers have investigated the MLP weight sparseness problems in
the past. The most well known work [9,10] pruned the weights after
training converges based on the second-order derivatives. Unfortu-
nately, these algorithms are difficult to scale up to large training set
we typically use in speech recognition and their advantages vanish if
additional training iterations are carried out upon the pruned weights.

Fig. 1. The weight magnitude distribution of a 7-hidden-layer DNN
illustrated as the percentage of weights whose magnitude is below a
threshold.

3.1. Soft Regularization Formulation

In the soft regularization formulation, we convert the problem to
maximizing the criterion

D0 =
T∑

t=1

logPs|o(s|o)− α · ‖W‖0, (5)

where the L0 matrix norm ‖W‖0 is the number of nonzero weights,
and α is a balancing parameter. We further approximate D0 as

D1 =
T∑

t=1

logPs|o(s|o)− α · ‖W‖1, (6)

by replacing L0-norm with L1-norm.
Maximizing D1 can be solved by following the sub-gradient

∂D1

∂W �
=

∂D

∂W �
− α · sgn(W �) (7)

where sgn(·) is the sign function applied element-wise.
Unfortunately, the SGA method with sub-gradient (7) usually

does not generate precise sparse solutions. To enforce a sparse solu-
tion, one often truncates the solutions after each K steps by forcing
parameters with magnitude smaller than a threshold θ to zero [11].
This truncation step, however, is somewhat arbitrary and is not a di-
rect derivation from optimizing D1. In addition, K is difficult to
select correctly. In general, it is not desirable to take a small K (e.g.,
1), especially when the minibatch size is small, since in that case
each SGA update step only slightly modifies weights. When a pa-
rameter is close to zero it remains so after several SGA updates and
will be rounded back to zero if K is not sufficiently large. Conse-
quently, truncation can be done only after (a reasonably large) K
steps in the hopes that nonzero coefficients have sufficient time to go
above θ. On the other hand, a large K means that every time the pa-
rameters are truncated, D will be reduced and will require a similar
number of steps to get the loss compensated.

3.2. Convex Constraint Formulation

In the convex constraint formulation, we maximize the log condi-
tional probability D subject to the constraint

‖W‖0 ≤ q (8)
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where q is a threshold value for the maximal number of nonzero
weights allowed.

This constrained optimization problem is hard to solve. How-
ever, an approximate solution can be found following two observa-
tions: First, after sweeping through the full training set several times
the weights become relatively stable — they tend to remain either
large or small magnitudes. Second, in a stabilized model, the impor-
tance of the connection is approximated well by the magnitudes of
the weights (times the magnitudes of the corresponding input values,
but these are relatively uniform within each layer since on the input
layer, features are normalized to zero-mean and unit-variance, and
hidden-layer values are probabilities). This leads to the very simple
yet efficient and effective Algorithm 1. After Step 2 sparseness

Algorithm 1 Main Steps to Train a Sparse DNN

1: Train a fully connected DNN by sweeping through the full train-
ing set several times using labels from forced alignment.

2: Keep only the connections whose weight magnitudes are in top
q.

3: Continue training the DNN with the sparseness pattern gener-
ated from Step 2 unchanged.

constraint (8) is enforced. However, the log conditional probability
D is reduced due to connection pruning, esp. when the degree of
sparseness is high (i.e., q is small). It is thus important to apply Step
3 and continue training the DNN, which tends to converge much
faster than the original training.

We have developed an empirically effective approach to keeping
the same sparse connections (and thus same sparseness constraint)
in Step 3. We can either mask the pruned connections or round
weights with magnitude below min{0.02, θ/2} to zero, where θ is
the minimal weight magnitude that survived the pruning and 0.02 is
determined by the sparseness pattern shown in Fig. 1. The masking
approach is cleaner but requires storage of a huge masking matrix.
In our implementation we used the rounding alternative. Note that
it is important to round only weights smaller than min{0.02, θ/2},
instead of θ, to zero. This is because the weights may shrink and
be suddenly removed and it is desirable to keep the effect of this
removal to minimum without sacrificing the degree of sparseness.

Compared to the sub-gradient solution associated with the soft
regularization formulation, Algorithm 1 carries several benefits:
First, threshold q can be easily determined by examining the weights
after Step 1. Determining the truncation parameter θ in the sub-
gradient solution, however, is very difficult. Second, we can mask or
truncate the weights after each SGA update in Step 3 without perfor-
mance degradation. However, in the sub-gradient solution, it is very
difficult and sometimes impossible to find a good update number K.
Third, in the sub-gradient solution, we need to tune the balancing
parameter α while there is no such parameter in Algorithm 1.

3.3. Data Structure

The sparse weights learned generally have random patterns. Here
we propose data structures to effectively exploit the sparse weights
to reduce model size and to speed up decoding calculation (WT v).
One data structure example is depicted in Figure 2. The basic idea
is simple: only store and calculate with the nonzero-weights (nzws).
To speed up the calculation we stored the indexes and actual weights
into adjacent groups so that they can be retrieved efficiently with
good locality. A slightly different but almost equally efficient data
structure is to group pairs of indexes and weights. With the proposed
data structure, each column can be multiplied with the input vector

in parallel. To further speed up the calculation, parallelization can
also happen within each column.

Note that the data structure shown in Figure 2 is just one im-
plementation. The best data structure depends heavily on the hard-
ware architecture chosen and the trade-off between storage size and
computation speed. For example, the index block iks can be further
compressed by keeping the delta indexes (requires only one byte per
index). Further more, if streaming SIMD extension (SSE) instruc-
tions are used, we can group frames into batches of four and store
nonzero weights row-first to achieve similar computation speedup.

The saving of storage from using the data structure shown in
Figure 2 is obvious. For an N ×M single-precision matrix with x%
nonzero-weights, the normal matrix requires 4×N×M bytes. With
the proposed data structure, it requires 2 + 6 × M(1 + x% × N)
bytes, which takes less space when x% < 2/3− 1/N .

The speedup of calculation depends heavily on the implemen-
tation and hardware used. For a naive matrix-vector multiplication
(i.e., SSE is not used), it requires N ×M multiplications and sum-
mation, and 2×N ×M memory accesses. With the proposed data
structure, it requires only x%×N ×M multiplications and summa-
tions, and 3× x%×N ×M memory accesses.

Fig. 2. A data structure that can exploit the random sparseness pat-
tern in weight matrices to save storage and speed up calculation,
where nzws = nonzero-weights

4. EXPERIMENTAL RESULTS

Evaluation was done on the VS and SWB datasets.

4.1. Dataset Description

The VS dataset contains US-wide business and location search
queries with a 24-hour (or 32,057-utterance) training set, a 6.5-hour
(or 8,777-utterance) development set, and a 9.5-hour (or 12,758-
utterance) test set. For the sake of easy comparisons, we have used
the same lexicon, tri-gram language model (LM), and 39-dim MFCC
features as in previous studies [1]. The LM contains 65K word uni-
grams with a perplexity of 117 and OOV rate of 6% on the test set.
The total number of senones and number of mixtures in this dataset
is 761 and 24 respectively and were optimized for CD-GMM-HMM
systems trained under maximum likelihood (ML) criterion.

The SWB dataset used in this study contains the standard 309-
hour Switchboard-I training set [5], and the NIST 2000 Hub5 and
RT03S (FSH portion) evaluation sets. The system uses 13-dim
PLP features with windowed mean-variance normalization and up
to third-order derivatives, reduced to 39 dimensions by HLDA.
The 3-state speaker-independent crossword triphones share 9304 40-
mixture senones optimized for the ML-trained GMM-HMM system.

4.2. Results and Discussions

To obtain the experimental results shown in Tables 1 and 2 we have
followed the steps in [1] to build the fully-connected CD-DNN-
HMMs and steps in Alg. 1 for the sparse models. In all the setups,
DNNs were first pre-trained using the DBN pretraining algorithm [8]
generatively and then fine-tuned discriminatively using the BP algo-
rithm. Additional details can be found in [1, 2]. CD-DNN-HMMs
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Table 1. Model size, computation time, and percent query error rate
(QER) with and without sparseness constraints on the VS dataset.
CD-DNN-HMMs contain 5 hidden layers each with 2048 nodes
trained using CD-DNN-HMM alignment. ‘nz’ means ’nonzero.’ The
OOV rate for both the dev and test sets is about 6%.

acoustic # of nz Model Calc Dev Test
model params Size Time QER QER

GMM MPE 1.5M - - 34.5 36.2

CD-DNN-HMM 19.2M 100% 100% 28.0 30.4

sparse: 67% nz 12.8M 101% 80% 27.9 30.3
sparse: 46% nz 8.8M 69% 55% 27.7 30.1
sparse: 31% nz 6.0M 47% 37% 27.7 30.1
sparse: 21% nz 4.0M 32% 25% 27.8 30.2
sparse: 12% nz 2.3M 18% 14% 27.9 30.4
sparse: 5% nz 1.0M 8% 6% 29.7 31.7

Table 2. Model size, computation time, and percent word error rate
(WER) with and without sparseness constraints on the SWB dataset.
CD-DNN-HMMs contain 7 hidden layers each with 2048 nodes;
trained using CD-DNN-HMM alignment. ‘nz’ means ’nonzero.’
acoustic # of nz Model Calc Hub5’00 RT03S
model params Size Time SWB FSH

GMM, BMMI 29.4M - - 23.6 27.4

CD-DNN 45.1M 100% 100% 16.4 18.6

sparse: 69% nz 31.1M 104% 83% 16.2 18.5
sparse: 52% nz 23.6M 78% 62% 16.1 18.5
sparse: 34% nz 15.2M 51% 41% 16.1 18.4
sparse: 24% nz 11.0M 36% 29% 16.2 18.5
sparse: 19% nz 8.6M 29% 23% 16.4 18.7
sparse: 15% nz 6.6M 22% 18% 16.5 18.7

outperform discriminatively trained CD-GMM-HMMs by 16% and
33% relative error reduction, respectively, on the VS and SWB
datasets. Note that in both cases the size of the CD-DNN-HMM
is much larger than that of the corresponding CD-GMM-HMM.

We do not present the results obtained by the sub-gradient algo-
rithm associated with the soft regularization formulation in Tables 1
and 2 due to its limitations discussed in Section 3. Because of the
requirement to tune many parameters in the sub-gradient algorithm
and the fact that training DNNs are expensive, we only applied this
algorithm to several configurations on the VS dataset. From all the
configurations we have tried, the sub-gradient algorithm consistently
under-performs Alg. 1 by 1-2% in absolute terms. Furthermore, if
we use θ instead of min{0.02, θ/2} in Step 3 of Alg. 1 as the trun-
cation threshold, we lose 0.1-0.3% in absolute terms.

Overall, by exploiting the sparseness property in the model, we
obtained 0.2-0.3% absolute error reduction and simultaneously re-
duced the connections to only 1/3 on both the VS and SWB datasets.
Alternatively, we can reduce the number of weights to 12% and 19%,
respectively, on the VS and SWB datasets, without sacrificing recog-
nition accuracy. In that case, the CD-DNN-HMM is only 1.5 and 0.3
times as large as the CD-GMM-HMM on the VS and SWB datasets,
respectively, and takes only 18% and 29% of the model size com-
pared to the fully-connected models. This translates to reducing
the DNN computation to only 14% and 23% of that needed by the
full-connected models on the VS and SWB datasets respectively, us-
ing either the basic CPU implementation or the SSE implementation
with frame batching.

5. CONCLUSION

The main focus of the research reported in this paper is to reduce the
model size, speed up the computation, and improve the generaliza-
tion ability of CD-DNN-HMMs. We have shown that while DNNs
can become very large as more layers are added, the majority of the
weights are close to zero and this is exploited to reduce the model
size in this work. We formulated the task of reducing the number of
connections in the DNN as soft regularization and convex constraint
optimization problems and proposed solutions under the SGA set-
ting. The method derived from the convex constraint formulation
we reported in detail in this paper performs better and is easier to
implement than the sub-gradient algorithm associated with the soft
regularization formulation. Experiments on VS and SWB datasets
demonstrated that a significant improvement in model size and com-
putation time can be obtained with the same or sometimes slightly
higher recognition accuracy.
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