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ABSTRACT

In this paper, we explore the use of Independent Component Anal-
ysis (ICA) and Principal Component Analysis (PCA) techniques to
reduce the dimensionality of high-level LVCSR features and at the
same time to enable modelling them with state-of-the-art techniques
like Probabilistic Linear Discriminant Analysis or Pairwise Support
Vector Machines (PSVM). The high-level features are the coeffi-
cients from Constrained Maximum-Likelihood Linear Regression
(CMLLR) and Maximum-Likelihood Linear Regression (MLLR)
transforms estimated in an Automatic Speech Recognition (ASR)
system. We also compare a classical approach of modeling every
speaker by a single SVM classifier with the recent state-of-the-art
modelling techniques in Speaker Identification. We report perfor-
mance of the systems and score-level combination with a current
state-of-the-art acoustic i–vector system on the NIST SRE2010
dataset.

Index Terms— Speaker Recognition, MLLR, ICA, PLDA,
SVM

1. INTRODUCTION

Maximum–Likelihood Linear Regression (MLLR) transforms [1, 2],
while not achieving by themselves state–of–the–art performance for
speaker recognition, have been successfully used in combination
with cepstral systems to improve recognition accuracy [3]. While
cepstral systems have greatly evolved in the last few years, how-
ever, MLLR–based systems for speaker recognition are still mostly
tied to the Support Vector Machine with Nuisance Attribute Projec-
tion framework [3]. Cepstral systems have first moved towards Joint
Factor Analysis based techniques [4], and, more recently, a JFA–
derived new representation of an entire utterance called i–vector [5]
has opened the way to successful generative and discriminative mod-
els (e.g. Probabilistic Linear Discriminant Analysis [6, 7] and pair-
wise SVM [8, 9]) which work directly on these low–dimensional
features.

Only very recently some effort was done to investigate how
some of these techniques can be applied to MLLR–based systems
[10]. The results of this work show that MLLR features compressed
with Probabilistic Principal Component Analysis (PPCA) and com-
bined with generative cepstral models like PLDA can achieve better
performance than NAP–SVM based techniques.

Starting from these results, we investigate an extension of PCA,
known as Independent Component Analysis [11, 12, 13], which has
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proven to be able to give better results than PCA in different contexts
(e.g. face recognition [14, 15]) . The goal of our work is to show that
an ICA–based system can produce low–dimensional MLLR features
that can be effectively modeled using techniques developed for i –
vectors. In particular, we show that both pairwise SVM (PSVM)
and Probabilistic Linear Discriminant Analysis (PLDA) achieve bet-
ter results than the SVM–NAP based system and that ICA–based
dimensionality reduction outperforms simple PCA. Finally, we ana-
lyze how these techniques combine with a cepstral i–vector system.

The paper is organized as follows. Section 2 describes MLLR
and Constrained MLLR transforms. In Section 3 we recall the classi-
cal SVM–NAP model. Section 4 presents the MLLR dimensionality
reduction process for PCA and ICA–based systems. The description
of the PLDA and PSVM classifiers are given in Section 5. Experi-
mental results are presented in Section 6 and conclusions are given
in Section 7.

2. MLLR

Due to the sparsity of training data, it is usually not possible to train
speaker-dependent models for the LVCSR system. MLLR and its
variant CMLLR are techniques used to adapt speaker-independent
models on the small amount of available speaker-specific data.
MLLR is a set of linear transforms, operating in the space of the
model parameters, which maximizes the likelihood of the adaptation
data by rotating all HMM model parameters. The transforms are
estimated using the EM algorithm [16, 1].

CMLLR is similar to MLLR, but mean and variance transforms
are constrained to be the same [17]. CMLLR has a significant advan-
tage, it can be applied online by transforming only the input features
and therefore, there is no need to transform model parameters [2] .
Note, that this attribute of CMLLR causes it to be also called feature-
space MLLR (FMLLR).

3. SVM-NAP TECHNIQUES FOR MLLR

The use of Support Vector Machines combined with Nuisance at-
tribute Projection has allowed in the past to build discriminative
speaker recognition systems based on MLLR transforms which pro-
vide useful complementary information to cepstral–based models
[3]. In this framework, SVMs are used in a one–versus–all fashion,
that is, for each enrollment speaker an SVM is trained to separate the
utterances of that speaker from a set of background impostors utter-
ances. The resulting hyperplane is then used to score test segments.

The main issue of this approach is that the SVM classes are
highly unbalanced: the utterances for the enrolled speaker are very
few, and in some cases only one utterance is available. Nevertheless,
the use of techniques for nuisance compensation such as Nuisance

4365978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Attribute Projection (NAP) have allowed in the past one–versus–all
SVM systems to achieve good performances for both cepstral [18]
and MLLR–based systems [3].

4. MLLR PREPROCESSING

4.1. Rank normalization

In SVM–NAP based systems rank normalization can be useful to
increase performance of the system [19]. For every dimension, a
feature value is replaced by the position the feature would have oc-
cupied in the ordered set of values taken from a background training
set. In the following we assume MLLR features have been rank–
normalized.

4.2. Probabilistic Principal Component Analysis

Principal Component Analysis is a well–known feature reduction
technique [20]. PCA can be defined as the linear projection that
minimizes the average reconstruction cost for the data, where the
cost is given by the mean squared distance between data points and
their projections. The solution is given by the eigenvectors of the
data covariance matrix corresponding to the largest eigenvalues.

A probabilistic formulation of PCA, known as Probabilistic
Principal Component Analysis, describes PCA as the maximum–
likelihood solution of a latent variable probabilistic model [20]. The
model is given by

x = W s+ ε,

where x is assumed to be a zero–mean d–dimensional observable
random variable, s is a p–dimensional Gaussian distributed latent
random variable and ε represents Gaussian distributed random noise.
PPCA solution can then be estimated by means of EM algorithm
[20]. It is possible to show that the subspace spanned by the PPCA
is the same subspace identified by standard PCA [20].

4.3. Independent Component Analysis

Independent Component Analysis is a technique that allows to lin-
early transform a multidimensional random vector into statistically
independent components [11, 13]. ICA can be interpreted as an ex-
tension to PCA, in the sense that PCA looks for dimensions which
decorrelate data, while ICA looks for dimensions which make data
independent.

Given a zero–mean random vector of observable variables
x = (x1, . . . , xd), the ICA problem can be formulated [12] as
the estimation of a transformation matrix A which maps a (latent)
p–dimensional variable s into x according to

x = As

under the assumption that the components of s are statistically inde-
pendent. Independent components are assumed to be non–Gaussian.

Another formulation for ICA was given in [11]. In this inter-
pretation, ICA looks for an invertible transformation matrix W such
that s = Wx that minimizes the mutual information of the variables
si [13].

ICA has been successfully applied in the past for face recogni-
tion problems [14, 15], and two different flavors of ICA have been
developed, known as Architecture I and Architecture II.

4.3.1. Architecture I

In Architecture I MLLR features are considered as the linear com-
bination of statistically independent basis MLLR transforms. ICA
learns the transformation matrix W in order to estimate this statis-
tically independent MLLR basis [14, 15]. PCA is used to reduce
dimensionality and to whiten the MLLRs before ICA is computed.
In this case, each MLLR is transformed to a zero–mean vector before
PCA and ICA are computed.

4.3.2. Architecture II

In Architecture I we look for a set of independent basis vectors. The
independence of the basis, however, does not imply the indepen-
dence of the coefficient of the projected MLLR features. Architec-
ture II looks for a transformation matrix such that the transformed
coefficients are statistically independent [15]. Again, PCA is used
to reduce dimensionality and to whiten the data. This time each sin-
gle MLLR dimension is transformed to a zero–mean vector over the
different utterances.

5. PLDA AND PAIRWISE SVM

After the introduction of i–vectors cepstral modelling started to fo-
cus on low–dimensional generative and discriminative techniques
for i–vector based speaker identification. One of the most successful
techniques is, in this field, the Probabilistic Linear Discriminant
(PLDA) model, a generative model whose different flavors have
proven to achieve state–of–the–art results [7, 21]. Starting from
PLDA, a new framework for discriminative training of speaker
recognition systems was recently introduced in [8, 9], showing that
SVM–based systems can also achieve state–of–the–art performance
for i–vector modelling.

5.1. PLDA

Probabilistic Linear Discriminant Analysis describes the process of
generation of an observed feature vector φ using a latent variable
model

φ = m+ U1y + U2x+ ε,

where y and x are latent variables related to speaker identity and
channel respectively, usually referred to as speaker factor and chan-
nel factor, ε represent residual noise and U1 and U2 are low–rank
matrices used to constrain the dimensionality of speaker and chan-
nel subspaces. More details about the PLDA model can be found in
[7] and [21].

5.2. Pairwise Discriminative Training

The pairwise SVM framework presented in [8, 9] proves to be a com-
petitive discriminative technique for cepstral–based speaker recogni-
tion. Instead of training one SVM for each speaker as in the SVM–
NAP system, a single model is built which is able to directly score
a pair of utterances as belonging to the same speaker or not. This
framework not only allows to achieve state–of–the–art performance
in i–vector modelling, but allows for fast testing of utterance pairs
(trials), since there’s no need to train a SVM for each speaker.

6. EXPERIMENTS

In this section we analyze the performance of our featured generative
and discriminative systems compared to the standard NAP–SVM ap-
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Fig. 1. Female set – DCF08 and DCF10 for different subspace con-
figurations. The dotted lines represents the DCF of the best configu-
ration for each subsystem

proach. Results are given for the 2010 Speaker Recognition Evalu-
ation [22] extended tel-tel condition for both female and male set
and are expressed in terms of Equal Error Rate, Minimum Detection
Cost Function as proposed by NIST for 2008 SRE (DCF08) and as
proposed for 2010 SRE (DCF10).

Our baseline is the NAP–SVM system used by the ABC site for
the 2010 SRE submission [19]

6.1. MLLR extraction

An LVCSR system was trained on a set 2000 hours of Fisher data
and 300 hours of Switchboard and Callhome data. Used features
were PLP12 0 D A T (in HTK notation) with VTLN applied and
HLDA used for dimensionality reduction. Speaker adaptive training
was done using fMPE + MPE models with crossword triphones. 2–
class CMLLR was used to model speech and silence, and 3–class
MLLR was used to model 2 data clusters and silence. Only speech–
related matrices are stacked together for our system resulting in fea-
ture vectors of dimensionality 4680. As ASR transcription the NIST
transcript were used. While phoneme alignment was estimated using
VTLN features, the MLLR and CMLLR transformation matrices are
estimated using non-VTLN features.

6.2. NAP–SVM system

MLLR and CMLLR matrices are stacked and rank–normalized as
described in section 4 using NIST 2004 and 2005 telephone data.
Nuisance Attribute Projection is used to compensate for channel and

Table 1. Results for the PLDA system. PCA/ICA dimensions are
indicated in parentheses. LDA and PLDA dimensions are both set to
250. Features are length–normalized

System Female Set Male set
EER DCF08 DCF10 EER DCF08 DCF10

MLLR Baseline
SVM–NAP 6.02% 0.255 0.559 6.43% 0.218 0.524

MLLR PSVM SYSTEM
PCA 5.42% 0.248 0.642 4.99% 0.204 0.525
ICA1 4.48% 0.214 0.613 4.59% 0.189 0.482
ICA2 4.48% 0.215 0.612 4.56% 0.189 0.480

MLLR PLDA SYSTEM
PCA (400) 4.22% 0.205 0.582 4.15% 0.180 0.520
ICA1 (400) 3.84% 0.186 0.567 4.15% 0.172 0.470
ICA2 (400) 4.16% 0.197 0.585 4.16% 0.173 0.473

PCA (600) 4.19% 0.205 0.594 4.76% 0.209 0.527
ICA1 (600) 3.80% 0.184 0.544 4.56% 0.192 0.494
ICA2 (600) 3.83% 0.184 0.542 4.53% 0.189 0.506

noise effects. Two NAP matrices are computed: the first is trained
on NIST SRE 2004 and 2005 telephone data, while the second is
trained on NIST SRE2005 and 2006 microphone data. 20 dimen-
sions from the first and 10 dimensions from the second were used
for NAP. The background cohort for SVM training consists of NIST
2004 and 2005 data. For a more detailed description of this baseline
system refer to [19].

6.3. ICA and pairwise SVM

Both ICA and PCA are trained on the same lists used for the SVM–
NAP system, comprising SRE 2004 and 2005 data. The same data is
also used to train the PSVM and PLDA systems. For the PLDA sys-
tem we add an LDA–WCCN step followed by length normalization
after ICA and PCA [21]. WCCN is applied to the ICA–projected
MLLR before SVM training [8].

6.4. Results

A first set of experiments was conducted to evaluate the performance
of the models with different subspaces dimensions. We tested 200,
400 and 600 PCA/ICA subspaces combined with different LDA di-
mensions (100, 150, 250) and different sizes for the PLDA speaker
factor subspace (100, 150, 250). The results are summarized in Fig-
ure 1, which shows DCF08 and DCF10 for the female set for dif-
ferent configurations for the three subsystems based on PCA, ICA
Architecture I (ICA1) and ICA Architecture 2 (ICA2). Due to lack
of space the details for all the configurations are not described. How-
ever, we can observe that both ICA architectures achieve better per-
formance than PCA in almost all the considered configurations, and
the best ICA configurations outperform the best PCA configuration.

Comparing the results for the different techniques we observed
that the best results for PCA are obtained with 400 dimensional PCA
followed by 250 dimensional LDA and 250 dimensional speaker
subspace for PLDA for both the male and female set. The same
configuration achieves the best performance also for ICA–based sys-
tems on the male set, although 600 dimensional ICA gives a small
improvement on the female set. The results for these conditions are
shown in the last block of Table 1. Since the same configuration (400
dimension for PCA/ICA, 250 for LDA and 250 for PLDA speaker
factors) achieves almost always the best performance for both PCA
and ICA, we now restrict our analysis for the PLDA system to these
settings.
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Table 2. Fusions of a cepstral system with PLDA and PSVM MLLR systems based on 400–dimensional ICA Architecture I

System Female Set Male set
EER DCF08 DCF10 EER DCF08 DCF10

I–vectors PLDA 2.05% 0.104 0.348 1.27% 0.067 0.318
I–vectors PLDA + MLLR PSVM ICA1 1.94% 0.096 0.322 1.32% 0.066 0.272
I–vectors PLDA + MLLR PLDA ICA1 1.89% 0.096 0.319 1.21% 0.064 0.285

For pairwise SVM we decided to train a single configuration
based on 400–dimensional PCA/ICA. The choice of the systems was
dictated by the results of the PLDA systems. The results are shown in
Table 1. PSVM achieves on average better performances than SVM–
NAP, with ICA giving better results than PCA. However, the results
are worse than those obtained by the PLDA system. We believe that
this might be due to the low number of available training patterns,
which negatively affects the discriminative systems more than the
generative PLDA systems.

Finally, Table 2 shows the results obtained by score–level fusion
of the ICA–based MLLR systems and a cepstral i–vector system.
400–dimensional i–vectors are used to train a PLDA system with
150 dimensional speaker subspace. WCCN and length normaliza-
tion is applied to i–vectors before PLDA training. The cepstral sys-
tem is trained on NIST 2004, 2005 and 2006 data. As expected, the
fusion of MLLR systems with a cepstral system allows to improve
the recognition performance.

7. CONCLUSIONS

We presented a new technique for extracting low–dimensional fea-
tures from MLLR tansforms based on Independent Component
Analysis. ICA–based feature reduction proves to perform better
than PCA–based dimensionality reduction when combined with
PLDA and Pairwise SVM modelling, and both ICA and PCA–based
PLDA and PSVM outperform the SVM–NAP approach. PLDA
gives, on average, better results than the PSVM approach. However,
fusion with a state–of–the–art cepstral system shows that both PLDA
and PSVM can be effectively used to improve cepstral models.
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