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ABSTRACT

In this paper, we propose a computationally efficient method to iden-
tify a speaker from a large population of speakers. The proposed
method is based on our earlier [1] Fast Maximum Likelihood Linear
Linear Regression (MLLR) anchor modeling technique which pro-
vides performance comparable to the conventional anchor modeling
system and yet reduces computation time significantly by computing
likelihood efficiently using sufficient statistics of data and anchor
specific MLLR matrix. However, both these systems still require
a Gaussian Mixture Model-Universal Background Model (GMM-
UBM) based back-end system to choose the optimal speaker, which
is computationally heavy. In our proposed method, we show that
applying Linear-Discriminant Analysis (LDA) and Within-Class-
Covariance Normalization (WCCN) on the Speaker characterization
Vector (SCV) of our recently proposed Fast-MLLR method, we can
combine the computational efficiency and the discriminant capa-
bility to have a system that uses simple cosine-distance measure
to identify speakers and yet has significantly superior performance
compared to both full-blown GMM-UBM system and the anchor-
model system. More importantly, there is no need of the “back-end”
system. Experimental result on NIST 2004 SRE shows that the
proposed method reduces identification error rate by an absolute 2%
and takes only 2/3 of the time taken by efficient Fast-MLLR system
and only 20% of the time taken by the stand-alone GMM-UBM
system.
Index Terms: Fast MLLR, WCCN, LDA, anchor model, speaker
identification

1. INTRODUCTION

Speaker Identification (SI) is the task of identifying a speaker from
a (closed) set of speakers in a database. This is in contrast to the
binary-hypothesis problem of speaker-verification where we have to
accept or reject a claimant speaker. Speaker identification is done
by matching the test utterance with the known registered speaker
models in the database. It can be mathematically expressed as,

Ŝ = arg max
1≤S≤L

P (X|λS) (1)

It is quite common to build speaker-models, λS , in a GMM-UBM
frame-work. From Eqn.(1) it can be seen that the computation time
of the system increases as the number of speakers in database, L,
increases. This is especially problematic in identifying speakers in a
large population.

Sturim et al. [2] proposed an approach called Cascade Anchor-
modeling system to reduce computation as well as get performance
comparable to GMM-UBM system of Eqn.(1) for speaker indexing
in a database of large population. This is illustrated in Fig.1. In this

cascade approach, the computationally-efficient front-end system se-
lects the N -most probable speakers for the back-end GMM-UBM
system to find the best speaker from the reduced set. Recently, we
introduced a computationally efficient anchor modeling technique
based on MLLR and sufficient statistics called Fast-MLLR anchor
system [1]. However, the disadvantage of the both these anchor-
modeling techniques [1, 2] is that they still need the computationally
expensive GMM-UBM based back-end system.
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Fig. 1. Cascade speaker identification system using anchor model-
ing technique.

The motivation of the method proposed in this paper is to:

• eliminate the computationally heavy back-end GMM-UBM
system in anchor modeling technique

• exploit the advantage of computational efficiency of our pre-
viously proposed Fast MLLR based anchor modeling tech-
nique [1]

• obtain performance that is better or comparable to the stan-
dalone GMM-UBM based system or cascade anchor model-
ing system

We show that by exploiting the discriminant ability of Linear Dis-
criminant Analysis (LDA) and Within-class Covariance Normaliza-
tion (WCCN) combined with the computational efficiency of Fast-
MLLR, we can achieve all the above objectives.

Several techniques have been proposed in literature to reduce
the computation cost of speaker-identification systems. The most
commonly used GMM-UBM framework speaker identification ap-
proach is described in [3], where speaker models are adapted from
GMM-UBM using Maximum a Posteriori (MAP) adaptation. There-
fore, there is a correspondence between Gaussian components of the
GMM-UBM and the speaker models. During test, the utterance is
first aligned with respect to GMM-UBM to find the top-C best mix-
ture components per feature vector. These same top-C components
are then traversed through speaker models in the database to calcu-
late the likelihood of the speaker. The saving in computation comes
from avoiding less important mixture components during testing.
Recently i-vector concept has shown great sucessful in speaker ver-
ification task [10]. Since the proposed method is based on without
concept of total variability space, i-vector system is not considered
as the scope of this paper.

4357978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



Some of the other methods include pruning [4, 5], speaker clus-
ter selection based method [6], pre-quantization [7] and Hash model
[8] in GMM-UBM based speaker identification system. In most of
these methods [4, 5, 6], the accuracy of their method and compu-
tation time are compared with calculating the likelihood from the
speaker models considering all Gaussian components (i.e. without
top-C fast scoring method). Further, none of these methods [4, 5, 6]
give better accuracy as well as provide saving in computation time.

The paper is organized as follows: Section 2 and 3 describe the
conventional and Fast-MLLR anchor modeling techniques. Our pro-
posed method is described in Section 4. Experimental setup and
baseline systems are described in Section 5. Section 6 describes the
selection of optimal LDA dimension. Results and discussion are pre-
sented in Section 7. Finally, in Section 8 we provide our conclusions.

2. CONVENTIONAL ANCHOR SYSTEM

In Speaker identification using anchor modeling technique [2, 9],
during training, evaluation speakers are represented by Speaker
Characterization Vector (SCV) with respect to anchor models, i.e.

SCVS = [p̃(X|λ1) p̃(X|λ2) . . . p̃(X|λE)] (2)

p̃(X|λE) is the normalized log-likelihood ratio of the data X
(of T feature vectors) with respect to Eth anchor model (λE) and
GMM-UBM, i.e.

p̃(X|λE) =
1

T
[log p(X|λE)− log p(X|λUBM )] (3)

Therefore, the normalized likelihood is calculated only for the an-
chor speakers, whose number are usually significantly lower than the
number of speakers in the population providing large gain in com-
putation time. A similar concept is used in eigen-voices for speaker-
adaptation and i-vector in speaker verification [10].

In test phase, the SCV, SCVt, corresponding to the utterance
from unknown speaker is compared to all speaker specific SCVs,
SCVS (obtained during training) in the database using a simple co-
sine angle similarity measure:

Ŝ = arg min
1≤S≤L

arc cosine(SCVt, SCVS) (4)

where Ŝ is the identified speaker of unknown test utterance. Since
only a simple but computationally inexpensive measure is used, the
identification accuracy of this stage is low. Therefore, N -most prob-
able speakers are selected from this stage to find the optimal speaker
using GMM-UBM based back-end system on this reduced set. This
combination gives the advantage of less computational cost of an-
chor system as well as greater accuracy of GMM-UBM based sys-
tem.

3. FAST MLLR ANCHOR SYSTEM

In this method, anchor speakers are represented by MLLR [11]
matrices instead of GMMs. The anchor specific MLLR matrix is
estimated with respect to GMM-UBM using data from the anchor
speaker. More details of this approach can be found in [1]. For
E anchor speakers, E number of MLLR matrices (W1, · · · ,WE)
are computed during training phase. The SCV of a speech segment
is efficiently calculated using anchor specific MLLR matrix and
sufficient statistics accumulated from the data. Following steps are
involved in likelihood calculation:
Initialization: Load the MLLR matrices of all anchor speakers
Step1: Determine the probabilistic alignment, γj (t) of the training
or test feature vectors, X = {x1, x2, . . . , xT } for jth components
of GMM-UBM.

Step2: Accumulate the two sufficient statistics for ith dimension of
the feature vectors as,

K(i) =
M∑

j=1

T∑

t=1

γj(t)
1

σ2
j,i

xi(t) μ
′

j (5)

G(i) =
M∑

j=1

1

σ2
j,i

μjμ
′

j

T∑

t=1

γj (t) (6)

where (.)
′

indicates matrix transpose operation. K and G are the
sufficient statistics estimated from speech segments and are not
specific to any particular speaker. σj , μj indicate the variance and
mean of jth mixture respectively.
Step3: The likelihood of the speech sample is calculated using
MLLR matrix WE and sufficient statistics as follows:

p(X;WE) =

{
−

1

2

{
D∑
i=1

(we,iG
(i)w

′

e,i − 2K(i)w
′

e,i)

}}
(7)

where, we,i is the ith row of MLLR matrix (WE) and D is the di-
mension of the feature vector. This is computationally very efficient
since likelihood calculation involves matrix multiplication with suf-
ficient statistics as seen in Eqn.(7).

The SCV of the Fast MLLR anchor system is formed similar to
Eqn.(2), with the elements being p̃(X;WE), where,

p̃(X;WE) =
1

T
[log p(X;WE)− log p(X;Wglb)] . (8)

Wglb is the global MLLR matrix estimated by pooling data from all
the training speakers used to build the GMM-UBM.

4. PROPOSED METHOD OF FAST MLLR+LDA+WCCN

4.1. Linear Discriminant Analysis

In anchor-modeling frame-work, each speaker is characterized
by the SCV vector analogous to the i-vector used in speaker-
verification. Therefore, we can apply Linear-Discriminant Analysis
(LDA) to reduce the dimension and increase discriminability among
speaker classes. LDA is applied on the SCV, which is calculated
using the computationally efficient Fast MLLR anchor system dis-
cussed in the previous section. LDA projection matrix (A) of SCVs
is found by maximizing the ratio of between-class scatter (SB) and
within-class scatter (SW ) matrices, i.e.

max
A

J(A) =
A

′

SBA

A′SWA
(9)

The SW and SB are defined for c speaker classes as follows,

SW =

c∑

k=1

∑

z∈k

(z −mk)(z −mk)
′

(10)

SB =

c∑

k=1

nk (mk −m)(mk −m)
′

(11)

mk =
1

nk

∑

z∈k

z ; m =
1

n

∑

z∀c

z

where, mk and m are the mean of kth class and global mean tak-
ing data from all speaker classes respectively. z represents the SCV
and nk is the number of SCV examples that belong to kthspeaker
class. The solution of Eqn.(9) reduces to the problem of maximum
eigenvalue of S−1

W SB and the optimal columns of A are the eigen-
vectors corresponding to the largest eigenvalues. In our experiment,
we set nk to unity in Eqn.(11) to gives equal weight to all speaker
classes. SCV examples of each speaker are considered as single class
during estimation of matrix A.
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4.2. WCCN

LDA projection assumes equal within-speaker-class covariance
matrices. To further minimize the effect of different within-class
covariances, we applied WCCN [12] on LDA projected SCV. In
WCCN, a projection matrix B is found by cholesky decomposition
of W−1=BB

′

. W is the within-class scatter matrix and is expressed
as,

W =
1

c

c∑

k=1

∑

z∈k

(Az − m̂k)(Az − m̂k)
′

(12)

m̂k =
1

nk

∑

z∈k

Az

where, m̂k is the mean of LDA projected SCV of kth speaker
class. The projected SCV with LDA of dimension 150 followed by
WCCN is,

SCV [150×1] = B[150×150] A[150×346] SCV[346×1] (13)

In our proposed method, speakers are finally represented by their
LDA+WCCN project SCV i.e. SCV during training. Similarly dur-
ing test, the LDA+WCCN projected SCV of the test utterance is used
for cosine angle similarity.

Ŝ = arg min
1≤S≤L

arc cosine(SCVt, SCVS) (14)

Note that we do not use any further back-end system.

5. EXPERIMENT SETUP

We compare the performance of our proposed method for speaker
identification with stand-alone GMM-UBM based system with top-
C scoring [3, 13], conventional [2] and Fast MLLR [1] based cas-
cade anchor systems. The speaker models in case of GMM-UBM
based system and anchor modeling systems, are adapted from the
GMM-UBM with MAP adaptation using speaker’s training data.
Similarly, the anchor models for conventional anchor system are de-
rived from GMM-UBM using MAP. Only mean parameters of the
GMM-UBM are adapted during MAP adaptation in all cases. The
value of relevance factor is set to 16 in all cases. During test phase,
top-C=15 mixtures per feature vector are considered for likelihood
calculation from the speaker models to create the SCV of test data.
We used C=15 since it gives the best results in our experiment setup.

All speaker-identification experiments are performed using
speakers from NIST 2004 SRE core condition (i.e. 1-side train-
ing and 1-side test condition) as belonging to the population. The
database contains 310 speakers. There are 306 speakers having both
training and test examples. Therefore, for the closed set speaker
identification task, we consider these 306 speakers who have both
training and test utterances. The experimental setup results in 1163
utterances for test.

1346 (655 male, 691 female) anchor speakers are taken from
NIST-1999, 2001 SRE and speakers in training data of GMM-UBM.
This ensures that they can cover a large acoustic space.

39 dimensional MFCC feature vectors (C1 to C13 with Δ and
ΔΔ excluding C0) are extracted from speech signal sampled at 8
kHz with 10 ms frame-rate and 20 ms Hamming window using the
frequency band 300-3400 Hz. Two different frame removal tech-
niques are followed [14] to remove the silence/less energy frames.
Bi Gaussian modeling of energy components of the frames is ap-
plied for NIST 1999, 2001, 2002 SRE and Switchboard-1 Release-2,
and tri Gaussian modeling of normalized energy components of the
frames for NIST 2004 SRE. Silence-removed feature vectors are

normalized to zero-mean and unit-variance at utterance level.
The GMM-UBM with 2048 mixture components of diagonal
covariance matrices is trained using data from NIST 2002 and
Switchboard-1 Release-2.

For discriminant analysis to calculate the transformation matrix,
we consider data of the evaluation speakers from 3, 8, 16 training
sides condition of the database. The silence-removed and normal-
ized feature vectors are then segmented into 30 seconds intervals to
estimate a set of SCVs for a particular speaker. This yields about
15-100 SCVs per speaker class.

Experiments are run on a desktop computer having Intel core
i7 CPU 860 @2.80 GHz and 8 GB RAM. The program are imple-
mented in Matlab software in contrast to [1]. To assess the compu-
tation complexity, we measure the relative time taken to process the
data on identical computer setup by the different approaches.

The optimal anchor speaker set is selected from 1346 anchor
speakers in the database. It was found in [1] that 346 anchor
speakers provide the best representation in the space for the same
experimental setup. More details can be found in [1]. Hence, in
our experiments the size of the SCV (SCV[346×1]) is 346 without
LDA+WCCN.

6. SELECTION OF OPTIMAL LDA DIMENSION

In this section, we find the optimal LDA projection matrix, A which
yields the best discrimination among the speaker classes. The op-
timal dimension is chosen based on the speaker Identification Error
Rate (IER) of system which is defined as (100− accuracy)%.

Table 1. Speaker identification error rate for different LDA projected
dimension of SCV in proposed method.

LDA projected dimension of SCV
50 100 150 200 250 300

IER (%) 48.93 45.74 45.40 49.01 50.82 58.56

Table.1 shows the IER for different LDA dimensions. It is ob-
served from Table.1 that LDA projection dimension of 150 gives
the lowest IER and hence considered as the optimal LDA projection
dimension. The LDA matrix corresponding to dimension 150 i.e.
A[150×346] is selected as the best transformation matrix.

The LDA-projected SCV i.e. A[150×346]SCV[346×1] is used for
estimation of WCCN transformation/projection matrix, B[150×150]

using Eqn.(12).Finally, speakers are represented by LDA+WCCN
projected vector, SCV [150×1] .

7. RESULTS AND DISCUSSION

Fig.2 shows the comparison of speaker Identification Error Rate
(IER) of the proposed method against stand-alone GMM-UBM
and cascade anchor-model systems. Although our proposed and
stand-alone GMM-UBM (using Eqn.(1)) directly return the optimal
speaker, the cascade-systems first find the N -most probable speakers
and then find the optimal speaker using GMM-UBM system. For the
cascade systems, we show the performance for N=5 and N=10. The
performance of the cascade anchor systems approach that of GMM-
UBM system as N increases. However, the cascade anchor system
never performs better than the standalone GMM-UBM system since
their back-end system is the GMM-UBM system. Fig.2 also shows
the performance when LDA is applied on the SCV of front-end in the
cascade systems. From the figure, it can be seen that the proposed
method significantly reduces IER compared to all the other systems.
Fig.3 compares the average computation time required to identify
the speaker using the proposed method and the other systems. The
stand-alone GMM-UBM is computationally expensive because the
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Fig. 2. Comparison speaker identification error rate of proposed
method with baseline systems.

likelihood evaluations are done with respect to all the speaker mod-
els. For the cascade anchor systems the computation increases as
number of N -most probable speakers increases. In our experiments,
it so happens that the number of anchor models (i..e 346) are larger
than the evaluation speakers (i.e. 306). Hence, conventional cascade
system takes more time when compared GMM-UBM stand-alone
system. The real benefit of conventional cascade becomes obvious
when the database of evaluation speakers is very large [2] (say,
10,000).
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Fig. 3. Comparison computation time required to identify the
speaker of proposed method with baseline systems.

From Fig. 2 and Fig. 3 we observe that the proposed method sig-
nificantly reduces IER as well as provides significant gain in compu-
tation time. The main reason for the gain in computation time of the
proposed method, is that there is no need of a GMM-UBM back-end
system.

Table.2 summarizes the results and discussion of the above fig-
ures. It can be observed that proposed method shows absolute IER
reduction of more that 2% compared to other systems, as well as
takes only 2/3 of the time taken by the already efficient Fast-MLLR
system.

Table 2. Comparison of different systems (N=10).

System IER IER Reduc. Avg. time/ time saving
(%) by (a) over uttn. (sec.) by (a) over

Proposed (a) 37.92 - 8.15 -
Standalone

GMM-UBM 40.07 2.15 44.47 36.32
Con. cas.

anchor+LDA 40.50 2.58 52.83 44.68
Fast MLLR cas.

anchor+LDA 40.41 2.49 11.07 2.92

It is to be noted that all the systems i.e. stand-alone GMM-
UBM, cascade and Fast MLLR cascade anchor systems require only
one alignment of test data to identify the speaker.

8. CONCLUSION

In this paper, we have combined the discriminant ability of LDA and
WCCN with the computational efficiently of our recently proposed

Fast-MLLR system and shown that we can get better performance
than stand-alone GMM-UBM or conventional anchor-modeling
systems. More importantly, since only a simple cosine-distance
measure is used and no GMM-UBM back-end, it is even more com-
putationally efficient than our recently proposed Fast-MLLR system.
The discriminant analysis is done on the speaker-characterization
vector obtained from the front-end of the Fast-MLLR system.
Cosine-similarity is used on these features to find the optimal
speaker. Experimental result on NIST 2004 SRE shows that the
proposed method reduces identification error rate by an absolute 2%
and takes only 2/3 of the time taken by efficient Fast-MLLR system
and only 20% of the time taken by the stand-alone GMM-UBM
system.
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