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ABSTRACT

Bilinear models based feature space Maximum Likelihood Linear 
Regression (FMLLR) speaker adaptation have showed good 
performance especially when the amount of adaptation data is 
limited.  However, the model dimensionality selection is very 
critical to the performance of bilinear models and need more work 
to find the optimal selection method. In this paper, we present an 
empirical study on this issue and suggest using a piecewise log-
linear function to describe the relationship between the relatively 
optimal dimensionality parameter and the variant amount of data. 
This relationship can be used to efficiently select the bilinear model 
dimensionality in FMLLR speaker adaptation with the variant 
amount of data for each test speaker to improve recognition 
performance on the English voice control dataset.  

Index Terms— Model dimensionality selection, bilinear 
models, FMLLR, rapid speaker adaptation 

1. INTRODUCTION 

Mismatch between the training and testing conditions leads to loss 
of some performance based on well-trained models. Many state of 
the art adaptation methods can help compensate for speaker 
variability, channel variability and content variability. Generally 
speaking, the model-based adaptation algorithm can be divided into 
three categories [1], speaker clustering based method which 
includes eigen-space based methods, Bayesian based method such 
as maximum a posteriori adaptation, and transformed based 
methods, such as maximum likelihood linear regression adaptation. 

Model-based methods need to change the speaker-independent 
HMM parameters, which can be computationally expensive and 
requires storing significant amount of data for the adapted speaker-
dependent models. In speech application, most server-based speech 
recognition systems avoid model space adaptation [2]. In this paper, 
we focus on feature space maximum likelihood linear regression 
(FMLLR), it is sometimes known as Constrained MLLR (CMLLR), 
which applies a single linear transform to the features. This is 
preferable for online rapid adaptation application, where rapid 
adaptation refers to adaptation with a relatively small amount of 
adaptation speech (often less than 30 sec.). When the amount of 
available adaptation data is limited to the decoding process, the 
conventional algorithms can be easily over-trained, and result in 
very small performance improvement, or even degrade the 
performance. In such case, by introducing some structural 
constraints on the FMLLR transformation, the original FMLLR 
adaptation method can be modified for rapid adaptation. Various 
methods have been proposed for rapid speaker adaptation. In [3], 
feature space maximum a posteriori linear regression (FMAPLR) 
uses a Bayesian prior to smooth FMLLR, which can achieve 
robustness to limited amount of adaptation data by incorporating a 

prior distribution that is learned on the training data. Because of 
robust performance, we use it as baseline of rapid adaptation here. 
In [4], we have proposed a novel method for FMLLR speaker 
adaptation under the bilinear model framework based on the 
Singular Value Decomposition (SVD) to effectively incorporate 
prior information and reduce the number of free parameters. 
Meanwhile, the model dimensionality is critical to bilinear model and 
selection method need to be investigated to achieve the optimal 
performance. In this paper, we investigate how the model 
dimensionality affects the performance of bilinear models in 
speaker adaptation experiments, and then propose a piecewise log-
linear formula to define the parameter for each test speaker based 
on the experimental observations.

The rest of the paper is organized as follows: In section 2 
FMLLR & FMAPLR as baseline method is briefly introduced. 
Section 3 describes the concept and formulation of bilinear models 
for FMLLR. In section 4 experiments are presented and the results 
will be discussed. We will draw some conclusions in section 5. 

2 FMLLR & FMAPLR ESTIMATION 

2.1. FMLLR 

FMLLR has proved to be highly effective as a method for 
unsupervised adaptation to a new speaker or environment [5]. It 
requires only a single transform matrix and bias vector to be 
estimated, which is implemented through a linear feature space 
transform:            

)()()( WbAOO .                            (1)
Where )(O is the N -dimensional feature vector at time in the 

original feature space, and )(O is the transformed feature. 
][ AbW is an )1(NNx matrix which maximizes the likelihood 

of the adaptation data. A is the NxN  transformation matrix; b  is 

the 1Nx bias term. TTO ])(1[)( is the 1)1( xN extended
observation vector.  

Assume the acoustic models uses diagonal covariances. The 
auxiliary function used for the estimation of transformation 
parameters with respect toW within EM framework given by:  
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Where iw is the transpose of the ith row ofW . ip is the transpose 

of the extended cofactor row vector ],,,0[ 1 iNi cc for the ith row
and )( ijij Acofc where Nj ,,1 with N  being the dimension 
of feature. The sufficient statistics for estimating the transformation 
are as follows: 

4353978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



M

m

T
T

mm
i

iG
1 1

2)(
)( )()()(1                  (3) 

M

m

T

m
m

im
i

ik
1 1

)(
2)(

)( )()(1                    (4) 

),|)(()(,)(
1 1

Tmm

M

m

T

m Oqp              (5) 

where )(mq is Gaussian component m at time . )(m is the 
posterior probability of )(mq given the current adaptation 
data )}(,),1({ TOOOT . M is the total number of components 
associated with corresponding hidden state. 
Differentiating with respect to T

iw yields: 
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By using direct method over rows, we get iterative solution,  
1)()( )( iTiT

i
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where is solved by an iterative procedure following the 
derivation in [5].

2.2. FMAPLR 

The basic idea of FMAPLR [3] is to apply the maximum a 
posteriori framework to maximize the following auxiliary Q-
function with suitable prior distribution )(Wp :

)(log WpQQ MLMAP                                 (8)
When the feature transformation matrix W is assumed to follow an 
elliptically symmetric matrix variate distribution as equation 9), we 
can estimate the FMAPLR transform in the same iterative way as in 
FMLLR. 
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where iM is the location parameter and i is the scale parameter for 

iw . iM and i are called the hypermeters of the prior distribution. 
Compared with FMLLR, the FMAPLR only need add the extra 
smoothing value to the standard FMLLR statistical parameters G 
and K with the prior knowledge about the transform distribution as 
follows: 
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3. FMLLR USING BILINEAR MODELS 

Generally speaking, in the model fitting process, the content basis 
vectors of bilinear model will be estimated based on an SVD from 
the standard FMLLR matrices of the training speakers. The 
adaptation process selects the dimensionality of the content basis 
vector and finds the best style matrix for a new speaker based on 
the expectation maximization (EM) algorithm.  Refer to [4] for the 
details.

3.1. Bilinear Model building for FMLLR 

For describing the FMLLR matrix using bilinear models, “style” 
can be defined as speaker standing for the variation across speakers 

and “content” can be defined as the columns of FMLLR matrix 
standing for the variation within the speaker. Let N be the 
dimension of feature vectors, then the standard FMLLR matrix 

sW for speaker s is an )1(NNx matrix, 0W  is the empirical mean 
of FMLLR matrices of training speakers, and the observation 
matrix AM is arranged as a )1(NSNx matrix as follows: 
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Then the bilinear model for the observation matrix is computed 
based on the stacked FMLLR transforms from the training database 
composed of S speakers. To find the optimal style and content 

parameters, the observation matrix AM can be decomposed and 

expressed in the asymmetric bilinear model as ABUSVM T
A

by SVD, where S is diagonal matrix whose elements are singular 
values arranged in descending order. Then, A is defined as the 
first J columns of US and B is defined as the first J rows of TV .

The stacked style parameter is xJSNRA )( ; NxJs RA denote the 
sth  speaker style matrix; and )1(NJxRB is the content 
parameters. 

3.2. Adaptation process 

The goal of adaptation process is to get the style factor for a new 
specific speaker t in iterative solution using content vector B
learned during training based on maximum likelihood criterion.  
Under the bilinear model framework, the observation can be 
represented as: 

                 )()()()( 0 BAWWO tt                        (13) 
Assume the diagonal covariance matrices are being considered, the 
objective of the maximum likelihood criterion is to maximum the 
following auxiliary function with respect tA , where ignoring all 
terms independent of tiA
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tiA , iw0 , tiw are the transpose of the ith row of the 

transform tA , 0W , tW , respectively. Statistical parameters )(iG and
)(ik are same with equation (3), (4). 

Differentiating with respect to T
tiA  yields 
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The optimization can be solved by using direct method over rows. 
Assuming that the equation (16) is equating to zero for row i , then 
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Rearranging yields 
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To find , substituting this expression for T
tiA  in equation (17), 

and yields 
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There will be two possible solutions in . The value will be 
selected that maximizes auxiliary function. It is worth noting that 
the above formulas derivation is similar to the standard MLLR 
solution [5] except for the additional terms related to the prior 
information of content vector B and empirical mean 0W .

3.3. Bilinear Model Dimensionality Selection 

The key advantage of bilinear model is to incorporate the prior 
information of training dataset into content basis vectors B fixed
duration the adaptation and effectively reduce the number of free 
parameters from )1(NNxRW to NxJRA by selecting J . We can 
see the model dimensionality J is critical to bilinear model and need 
more deep work to investigate the selection method for rapid 
speaker adaptation application. In [4], we tried some work to pre-
select J based on the objective function values of the corresponding 
adaptation data, but that method is not robust since small amount of 
adaptation data can not guarantee exact computation of objective 
function.
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Fig.1. Singular values of observation matrix 

As mentioned in section 3.1, S is a diagonal matrix with the 
singular values on the diagonal, which represent the relative 
importance of the corresponding content basis vectors. The 
descending order of is  in matrix S implies that the ith  content 
vector’s contribution decreases as i approaches 1N . Intuitively 
but rather roughly speaking, a low rank approximation of FMLLR 
matrix can be obtained by discarding the least significant singular 
values and corresponding singular vectors. The singular values is
extracted from observation matrix of training set in this paper are 
shown in Fig.1, and we also find that the plot is similar on other 
different task dataset. In the experiments, the values of bias term 
are much larger than those of transformation matrix in FMLLR 
estimation, so the largest singular value is much larger than others 
value and out of the range of Fig.1. The plot shows that the singular 
values decay slowly along the diagonal of the matrix (i.e. the 
singular values are relatively close), so we can not determine the J 
values by setting a threshold to select the top dominant singular 

values. On the other hand, generally speaking, the larger J value is, 
the closer approximate can be achieve to standard FMLLR. 
However, more number of free parameters need more amount of 
adaptation data. When the amount of available adaptation data is 
limited in the decoding process, the bilinear model with large J can 
be easily over-trained, and result in very small performance 
improvement. For bilinear models, in extreme case, when we have 
zero adaptation frame count, the FMLLR matrix will simply be 0W .
When we get more and more data, the impact of the prior will 
become smaller along with more adaptation data. In other words, 
when we select 1NJ , the bilinear model is the same as 
FMLLR. Obviously, the setting of optimal J depends on the amount 
of data. We will discuss the dependence relationship of the model 
dimensionality J selection in depth in section 4.1. 

4. EXPERIMENTS 

The experiments were based on an English speech recognition 
system for voice control application including command & control, 
voice queries and short message dictation on mobile device. The 
acoustic model consists of 9k tied-states and 400k Gaussian 
components, trained on 4000 hours of data. The recognition 
features were 32-d vectors computed via an LDA+STC projection 
from 48-d MFCC features (the static cepstra plus the 1st, 2nd and 
3rd order derivatives) with 10ms frame-shift. Model-space 
discriminative training was performed on the features. The 
language model used in the experiments was a general purpose 
trigram model. Bilinear model is trained on the FMLLR 
transformations of all the training speakers. Test set was composed 
of 40 speakers, referred to as 40 speakers set here. To evaluate the 
fast adaptation performance with variant amount of adaptation data, 
separate adaptation data and test data sets were available for each 
test speaker. The adaptation data of each speaker was above 4 
minutes long, recorded with same conditions of test data. True 
transcription by manual correction of decoding results generated by 
the decoder of baseline is employed on 40 speakers set, treated as 
supervised adaptation scenario. Each speaker has about 2 minutes 
data, and it may have included various real-life background noises. 
The test set was used to study the effects of bilinear model 
dimensionality J parameter and evaluate the performance. 

4.1. Model Dimensionality Selection 
The setting of J depends on the amount of data. A larger amount of 
data requires a larger J to achieve the best performance, while a 
smaller amount of data needs a smaller J to reduce the number of 
free parameter and to improve the stability. In a speech system, the 
amount of adaptation data available for each speaker often varies, 
and using a fixed J values for all speakers will lead to suboptimal 
accuracy. Fig. 2 shows the performance comparison with the 
different J value for the variant amount of adaptation data including 
silence from 3 seconds to 1 minute on 40 speakers set. In this 
experiment, we pick up data orderly at utterance level for each 
speaker, and end up with the data length larger than the setting 
amount of data (i.e. the adaptation data for each test speaker is just 
approximate to the setting data amount). It can be seen that when 
the adaptation data is relatively sufficient (i.e. >20 seconds), a 
larger J can lead to a lower WER, while for limited adaptation data 
(i.e. <20 seconds), a larger J will easily cause over-training, 
resulting in a very high WER. The smaller J reduces the number of 
free number effectively and guarantees the convergence for all 
amounts of data, especially for very limited data. 
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Fig. 3 shows the relatively optimal J obtained via manual 
tuning for each amount of adaptation data on test set (represented 
by blue line with square marks), where we tried different fixed J for 
all speakers and picked up the optimal J with best WER 
performance on each amount of data case. The plot shows that the 
optimal model dimensionality J of bilinear model highly depends 
on the amount of adaptation data, and the dependence tends to be 
piecewise log-linear. The J value decreases slowly when the 
amount of data is larger than 45seconds, while the plot declines 
relatively fast when the amount of data is smaller than 45 seconds.  
The mapping relationship between data amount and J can be 
described by the following piecewise log-linear functions: 

otherwise(n)ln0.8653-1.2ln(J)
45snln(n)0.0433.1457)Jln(

                (20) 

where the linear parameters were learnt via linear regression. The 
correlation coefficient of )Jln(  and (n)ln  (n denotes the amount 
of data) was 0.99, confirming the log-linear dependence. The red 
line with dot marks in Fig. 3 shows the predicted J (rounding to 
integer) contour, which is rather close to the manually tuned one.  
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Fig. 2. Comparison of performance with different J value when the 
amount of adaptation data varies.
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Fig. 3. Comparison of the best tuned J and the regressed J with the 
variant amount of adaptation data.

We also tried the similar experiment about model 
dimensionality selection on another dictation system, and get the 
same conclusion. The difference is the turning point. In the 
implementation, we can pre-compute the J values of some 
representative amount of data based on the prediction function, and 
then predict J by lookup table in estimation process. Then selection 
process will be very efficient and fast.  

4.2. Experimental results 

Tables 1 list the WERs of FMLLR, FMAPLR and bilinear model 
on 40 speakers set. Standard FMLLR and FMAPLR are employed 

as baseline method, and two different J selection methods were 
compared: a) J was manually tuned to obtain the best accuracy 
specifically for each amount of data; b) J was predicted using (20). 
As mentioned in section 4.1, the exact amount of adaptation data 
for each speaker is slightly different on each amount of data case 
(especially when some utterances are long), therefore the bilinear 
model dimensionality J was predicted for each speakers in the 
bilinear experiments of predicted J, while the experiments results 
with ~optimal J were based on the same dimensionality for all 
speakers as in Fig. 3. For both test sets, bilinear model with the J 
defined by (20) for each speaker (denoted as predicted J) 
significantly outperformed the FMLLR baseline for all amount of 
data and FMAPLR baseline for limited adaptation data (i.e. <=30s), 
and it performed similarly to bilinear model with J tuned manually. 
We also can see the conventional standard FMLLR transforms can 
be easily over-trained and can result in a very high WER, when 
there are relatively limited adaptation data (i.e. <=20s). On the 
other hand, the transformation estimated based on bilinear model 
can substantially achieve the robust performance even with very 
limited data. Especially, even when 3 seconds adaptation data were 
used for each speaker, bilinear model based on predicted J reduced 
the WER by relatively 3.4% compared with baseline result w/o 
adaptation for supervised adaptation scenario.  
Table 1. Performance (WER) comparison with variant amount of 
adaptation data (baseline w/o adaptation: 15.66%) 

40 speakers set 1min. 30sec.20sec. 10sec. 5sec. 3sec.
standard FMLLR 14.56 14.64 16.01 17.43 22.62 25.51

FMAPLR 14.43 14.62 15.75 16.28 16.74 17.01
bilinear with ~optimal J 14.49 14.46 15.18 15.07 15.07 15.12
bilinear with predicted J 14.49 14.69 14.94 15.27 15.07 15.12

5. CONCLUSIONS 
We present an empirical study that investigates the relationship 
between the dimensionality parameter and the variant amount of 
data based on the adaptation performance of bilinear models. The 
experimental results suggest that a piecewise log-linear function 
exists between the optimal model dimensionality and the amount of 
adaptation data, which could be used to predict dimensionality for a 
test speaker. With predicted J, bilinear models performance was 
close to that of bilinear model with J manually tuned, and better 
than standard FMLLR and FMAPLR, especially when limited 
adaptation data (<=30 sec) were available.  
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