
LATENT VARIABLE SPEAKER ADAPTATION OF
GAUSSIAN MIXTURE WEIGHTS AND MEANS

Xueru Zhang∗, Kris Demuynck, Hugo Van hamme

Katholieke Universiteit Leuven, Department of Electrical Engineering - ESAT
Kasteelpark Arenberg 10, Bus 2441, B-3001 Leuven, Belgium

{Xueru.Zhang,Kris.Demuynck,Hugo.Vanhamme}@esat.kuleuven.be

ABSTRACT

We describe a novel fast speaker adaptation algorithm for large vo-
cabulary speech recognition systems, which adapts both the Gaus-
sian means and the mixture weights. Gaussian means are expressed
as a linear combination of eigenvoices estimated with principal com-
ponent analysis. The non-negative Gaussian mixture weights are ex-
pressed as a linear combination of a set of latent vectors estimated
with non-negative matrix factorization. Experiments on the Wall
Street Journal database show that the combination of weight and
mean adaptation consistently improves the performance compared
to eigenvoice adaptation only. Improvements up to 5.8% relative
word error rate reduction were observed with 40 eigenvoices and
40 latent weight vectors. Furthermore, combining weight and mean
adaptation outperformed both weight and mean adaptation on itself,
even if the latter uses more latent vectors.

Index Terms— non-negative matrix factorization, eigenvoice
and weight adaptation, speaker adaptive training, fast speaker adap-
tation, latent variable method

1. INTRODUCTION

The large variability in speech signals is one aspect that makes
speech recognition a difficult task. A major component in this vari-
ability is the inter-speaker variation which is caused by variations
in speaker characteristics such as gender, age, dialect, vocal tract
length, etc. Different techniques have been proposed to compen-
sate for this speaker variability. These techniques can be classified
into two categories: feature-based transformations and model-based
adaptation. The former techniques transform the feature vectors so
that the derived speech feature vectors are more robust to speaker
variations. Vocal tract length normalization [1] (VTLN) for exam-
ple, compensates the variability resulting from physical vocal tract
length differences among speakers. Model-based adaptations adjust
the speaker independent (SI) acoustic models towards the speaker
dependent (SD) models. By tuning the system to be speaker specific,
a considerable amount of variability does not have to be modeled,
which significantly improves the performance of the recognition
system. Some well known and widely used model-based adaptation
techniques are maximum a posteriori (MAP) adaptation [2, 3] and
unconstrained and constrained (feature-space) maximum likelihood
linear regression ((c)MLLR) [4]. In this paper, we focus on coping
with the acoustic mismatches resulting from speaker variability by
incorporating model-based speaker adaptation techniques on top of
VTLN.

∗This work is funded by the Dutch-Flemish IMPact program (ICTRegie-
IBBT(Interdisciplinary Institute for Broadband Technology)).

When large amounts of enrollment data are available, MAP and
(c)MLLR are prevalently applied. MAP maximizes the posterior
probabilities of the model parameters (means and variances) with the
SI model parameters as priors. It converges to the maximum likeli-
hood (ML) estimate with large amounts of enrollment data. A draw-
back of MAP is that only those model parameters are updated for
which sufficient data are observed. (c)MLLR applies linear transfor-
mations to the SI model parameters to generate more speaker specific
acoustic models. It has a large number of parameters to be estimated
and hence requires large amounts of enrollment data.

However, in many applications only limited amounts of en-
rollment data are available. Under these situations, rapid speaker
adaptation techniques become quite appealing. In [5], the number
of coefficients are reduced by expressing the cMLLR transforma-
tion matrix as a weighted sum of basis matrices. Another approach
to achieve rapid speaker adaptation on small amounts of enroll-
ment data is to constrain the adaptable model parameters to a small
subspace. In eigenvoice fast speaker adaptation [6], the adapted
means are expressed as a linear combination of eigenvoices. These
eigenvoices are the prominent principal components of the speaker
dependent mean vectors of the training speakers estimated using
principal component analysis (PCA). The above listed model-based
speaker adaptation techniques all focus on adapting the means (and
variances) of the acoustic models. In [7] a ML-based rapid speaker
adaptation algorithm which adapts the Hidden Markov Models
(HMM) Gaussian mixture weights has been investigated. Similar
to eigenvoice adaptation, the Gaussian mixture weights of the eval-
uation speakers are expressed as a linear combination of a set of
latent vectors. Considering the Gaussian mixture weights are non-
negative values that sum up to one, PCA (eigenvoice adaptation)
cannot be applied directly. Instead, non-negative matrix factor-
ization (NMF) [8] which performs matrix factorization under the
constraints that elements of all the matrices are non-negative, is used
to estimate the latent vectors.

This paper starts from the observation that both eigenvoice and
weight adaptations are ML-based adaptation methods which rely on
a set of latent vectors and allow rapid speaker adaptation. In this
paper, we analyze and compare these two rapid speaker adaptation
techniques. We further combine NMF weight-based adaptation with
eigenvoice-based Gaussian mean adaptation to improve the perfor-
mance of large vocabulary speech recognition systems.

This paper is organized as follows. In section 2, we give an
overview of the eigenvoice speaker adaptation technique. In section
3, the NMF weight-based adaptation technique is recapitulated and
the relations with eigenvoice speaker adaptation are explained. We
introduce the proposed rapid speaker adaptation algorithm in sec-
tion 4. In section 5 we describe our speech recognition system and
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compare the recognition results obtained with the different speaker
adaptation algorithms. Conclusions are presented in section 6.

2. EIGENVOICE SPEAKER ADAPTATION

Eigenvoice speaker adaptation [6] is used to perform rapid speaker
adaptation by adjusting the SI Gaussian mean vector μSI. The eval-
uation speaker mean vector is expressed as a linear combination of
eigenvoices, which are derived from the training speakers. Firstly,
the SD mean vectors {μr}Rr=1 of the training speakers are estimated,
with r the training speaker index and R the total number of training
speakers. Next, PCA is used to estimate the eigenvectors from the
covariance or correlation matrix of the training speaker SD mean
vectors. The J eigenvectors with the largest corresponding eigen-
values are kept as eigenvoices {φj}Jj=1 with j the eigenvoice index.
The mean vector μe of the evaluation speaker e can be written as a
weighted combination of eigenvoices

μe = φ1ρ1 +
JX

j=2

φjρj (1)

with weighting coefficients {ρj}Jj=2. The first eigenvoice φ1 is set
to the SI mean vector μSI, with corresponding coefficient ρ1 = 1.0.

The coefficients {ρj}Jj=2 are estimated by maximizing the like-
lihood of the enrollment data. As is described in [6], this can be done
by solving matrix equation (2).X

s,k,t

γe;sk(t)φT
j;skΣ−1

SI;sk(ot − μSI;sk) =

X
s,k,t

γe;sk(t)

(
JX

i=2

ρiφ
T
i;skΣ−1

SI;skφj;sk

)
, ∀j = 2 · · · J (2)

with ot the observation at time t, s the state index, k the Gaussian
index at state s, γe;sk the posterior probability of Gaussian k at state
s of evaluation speaker e. μSI;sk and ΣSI;sk are the speaker indepen-
dent mean and covariance matrix of Gaussian k at state s respec-
tively.

The eigenvoices encode the relations between the SD means of
the training speakers. By exploiting these relations, means of Gaus-
sians not activated during the enrollment phase (unobserved Gaus-
sians) will still be updated, by extrapolating their behavior based on
those that were observed. Furthermore, the number of degrees of
freedom equals the number of eigenvoices minus one (φ1 = μSI,
ρ1 = 1.0). Given that the number of eigenvoices is small, only few
parameters have to be estimated and hence the eigenvoice speaker
adaptation technique can be used to compensate speaker variability
given small amounts of enrollment data.

3. GAUSSIAN MIXTURE WEIGHT ADAPTATION

The principle of the HMM Gaussian mixture weight adaptation [7]
is to adapt the weights instead of the means (and variances) of the
SI acoustic models. Similar to eigenvoice speaker adaptation, the
Gaussian mixture weights are expressed as a weighted sum of a set
of latent vectors. These latent vectors are estimated from the SD
Gaussian mixture weights of the training speaker. Considering the
Gaussian mixture weights are probabilities, the estimated latent vec-
tors are also required to contain proper probability distributions, i.e.
non-negative values that sum up to 1.0. Different from eigenvoice
speaker adaptation where PCA is used to estimate the eigenvoices

from the mean vectors, NMF [8] is applied to estimate the non-
negative latent vectors by maximizing the likelihood of the training
data.

NMF approximates a non-negative matrix V as a product of two
non-negative matrices: a latent vector matrix W and the latent vector
coefficient matrix H. For the NMF speaker adaptation, the matrices
W and H are chosen to maximize the training data likelihood, which
is equivalent to maximize the following auxiliary function:

Q(W,H) =
X

r,s,k,t

γr;sk(t) log(λr;sk), (3)

with Gaussian mixture weight for training speaker r expressed as a
linear combination over the L latent vectors w(s,k),l

λr;sk =
LX

l=1

w(s,k),lhl,r (4)

under the constraintsj P
k w(s,k),l = 1, ∀s, ∀lP
l hl,r = 1, ∀l (5)

This maximum likelihood formulation is equivalent to minimiz-
ing the extended Kullback-Leibler divergence between a matrix V
and WH with v(s,k),r =

P
t γr;sk(t). The update rules for W and

H are the same as in [8], except for an extra state-wise L1 normal-
ization of W after each iteration.

The adapted Gaussian mixture weights for the evaluation
speaker e are written as

λe;sk =
LX

l=1

w(s,k),lhe;l (6)

The latent vector coefficients he of the evaluation speaker e are esti-
mated to maximize the enrollment data of that speaker, which results
in the following iterative update rule:

he;l ←
X
s,k,t

γe;sk(t)w(s,k),lPL
i=1 w(s,k),ihe;i

he;l (7)

with he;l L1 normalized.
Analogous to eigenvoices, the latent weight vectors W encode

relations. Whereas eigenvoices encode relations between Gaussian
means, the latent weight vectors model the relations among the
Gaussian mixture weights observed over the different speakers in
the training data. Hence, during adaptation, unobserved Gaussian
mixture weights can be inferred from the observed ones. The num-
ber of degrees of freedom equals the number of latent vectors minus
one (the Gaussian mixture weights are probabilities which sum up
to one), which is small. Therefore, the NMF weight-based speaker
adaptation can adapt rapidly.

4. GAUSSIAN MEAN AND WEIGHT ADAPTATION

To improve the performance of the speech recognition system, we
combine the eigenvoice and NMF weight-based rapid speaker adap-
tation techniques. The two techniques can be expected to combine
very well for several reasons. i) Both eigenvoice speaker adaptation
and NMF weight-based speaker adaptation maximize the likelihood
of the enrollment data. ii) NMF weight-based speaker adaptation
provides an elegant solution to the problem that eigenvoice speaker
adaptation technique cannot be readily used to adapt the Gaussian
mixture weights. iii) For both techniques, the acoustic models of
the evaluation speaker are expressed as linear combinations of a set
of latent vectors, which are estimated from the speaker dependent
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acoustic models of the training speakers. iiii) Both techniques are
rapid speaker adaptations with a limited number of parameters to be
estimated based on the enrollment data.

Speaker adaptive training (SAT) [9] is used together with this
adaptation algorithm. SAT improves the performance of the speech
recognition system by reducing the inter-speaker variability and gen-
erating an acoustic model which more accurately represents the pho-
netic variations in the training data. In [7], we also showed that SAT
helps in exposing more relevant relations between Gaussian mixture
weights. The SAT model parameters λSAT, μSAT, ΣSAT, and a com-
mon cMLLR transformation matrix MSAT estimated on all training
speakers jointly, are estimated using the maximum likelihood crite-
rion. With only a few seconds of enrollment data, the speaker spe-
cific cMLLR estimate Me was found to be unreliable and hence
MSAT is applied as the transformation matrix during adaptation and
evaluation. Algorithm 1 lists the different steps involved in deriving
the eigenvoices and latent weight vectors.

Algorithm 1 Deriving the latent vectors for adaptation.

Step 1 : Initialize the SD mean vectors {μr}Rr=1 and Gaussian
mixture weights {λr}Rr=1 of the training speaker:

μr = μSAT; λr = λSAT with r = 1 · · ·R
Step 2 : Estimate the R SD mean vectors {μr}Rr=1 of the training
speakers, using MSAT as the transformation matrix.
Step 3 : Reestimate the SD mean vectors using MAP.

μ
(MAP)
r;sk =

γr;sk

γr;sk + Γ
μr;sk +

Γ

γr;sk + Γ
μSAT;sk (8)

where γr;sk is the cumulative Gaussian posterior probability; Γ is
the parameter to control the relative weight of the prior μSAT.
Step 4 : Estimate the eigenvoices {φj}Jj=1 by applying PCA to

the correlation matrix of the Gaussian means {μ(MAP)
r }Rr=1.

Step 5 : Estimate the eigenvoice weighting coefficients {ρj}Jj=2

of the training speakers by maximizing the likelihood of the data.
The coefficients can be computed from equation (2). This step is
iterated until the coefficients {ρj}Jj=2 converge.

Step 6 : Estimate the SD weight vectors {λr}Rr=1 of the training
speakers using the adapted mean vectors estimated in Step 5.
Step 7 : Formulate the NMF V matrix. The rth SD weight vector
λr forms the rth column of V.
Step 8 : Estimate the latent vectors W using NMF by maximizing
the likelihood of the training data; see [7] for more details.

In the eigenvoice technique, only the weights ρj are estimated
in the ML-sense (step 5). The eigenvoices φj themselves are created
using PCA (step 4). As a result, the eigenvoice model parameters
φj and ρj are not jointly ML. Given this limitation, iterating steps 2
to 8 to jointly optimize all parameters, i.e. φj , ρj for the eigenvoices
and W,H for the NMF weight adaptation, would only make sense
with ML-based eigenvoices as presented in [10]. Given that both the
eigenvoices and the latent weight vectors are designed to approxi-
mate the original SD parameters as good as possible, we do not ex-
pect substantial changes in the Gaussian means and weights in such
an iterative scheme.

During evaluation, the eigenvoice weighting coefficients {ρj}Jj=2

and the NMF latent vector coefficients he of the evaluation speak-
ers are estimated by maximizing the likelihood of the enrollment
data, given that the adapted means and weights are expressed as
linear combinations of latent vectors (equation (1) and equation (6)).
Maximizing the likelihood is equivalent to maximizing the auxiliary
function using Expectation-Maximization (EM).

Q(he, ρj) = Q(he) + Q(ρj) (9)

with

Q(he) =
P

s,k,t γsk(t) log(
P

l w(s,k),lhe;l)

Q(ρj) = − 1
2

P
s,k,t γsk(t)

˘
n log(2π) + log |ΣSAT;sk|+

(ot −PJ
j=1 φjρj)

T Σ−1
SAT;sk

(ot −PJ
j=1 φjρj)

¯
(10)

with observations O = o1 · · ·oT and n the feature dimension.
The optimum can be found by iterating equation (2) (with μSI;sk =
μSAT;sk and ΣSI;sk = ΣSAT;sk) and equation (6) until the coeffi-
cients converge.

5. EXPERIMENTAL RESULTS

5.1. Recognition system

The adaptation algorithms are evaluated on the Wall Street Journal
(WSJ) database. Training is done on the SI-284 data from both the
WSJ0 and WSJ1 database comprising 81 hours speech from 284
speakers. The acoustic model uses a shared pool of 32754 Gaussians
to model the observations in 5967 cross-word context-dependent
tied triphone states. On average, 94 Gaussian probability densities
are used to describe the emission probabilities per state. We use
a 3-state left-to-right topology to describe all the acoustic units —
context-dependent variants of one of the 42 phones or silence. Mean
normalization and VTLN are included in the preprocessing of the
recognition system. The acoustic features consist of 22 MEL spec-
tra, augmented with their first and second order time derivatives,
which generates 66 dimensional feature vectors. By means of a dis-
criminative linear transformation and decorrelation, these features
are then mapped to a lower 39 dimensional space. Notice that unlike
in other work, we adapt Gaussians that are tied over states.

For both development and evaluation, the WSJ 5k closed and
20k open vocabulary non-verbalized punctuation Nov92 and Nov93
tasks are combined. The development data are used to tune the sys-
tem parameters such as the pruning thresholds and the weight ratio
between the language model and the acoustic model. By combining
all the evaluation data, we obtain one large evaluation set containing
101 minutes of speech (18298 words).

The adaptation in the experiments is supervised. Given that the
same speakers are shared in each pair of 5k and 20k sub-tasks, we
choose the enrollment data outside the current sub-task, i.e. draw
enrollment data from the 5k sub-task to evaluate on the data of the
same speaker in the 20k sub-task and vice versa. By this way, we
can investigate the proposed algorithm with variable amounts of en-
rollment data.

The recognition system uses a 75k lexicon and a standard tri-
gram language model. The out-of-vocabulary ratio on the develop-
ment and evaluation set are 0.08% and 0.12% respectively. In our
experiments, Γ (equation (8)) is set to 3.

5.2. Results and discussions

Table 1 shows the word error rate (WER) on the evaluation data for
different speaker adaptation algorithms. In a preliminary experiment
we verified that the SAT acoustic model performed as good as the
SI model (which gives a 6.42% WER). In fact, we observed bet-
ter results in most tests when using the SAT model instead of the
SI model. For the NMF decomposition, the cumulative posteriors
corresponding to the 3-state silence model are discarded from V.
Hence, the Gaussian mixture weights of the silence states retain their
corresponding SAT mixture weight values.
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# latent vectors WER for different amounts of
enrollment data (seconds)

J L 0 3 6 8 100+

0 0 6.37 / / / /

0 2 / 6.16 6.15 6.14 6.13

2 0 / 6.01 6.02 5.97 6.00

2 2 / 6.03 6.00 5.93 5.97

0 10 / 6.06 6.08 6.09 6.01

10 0 / 5.95 5.99 5.90 5.97

10 10 / 5.87 5.89 5.76 5.81

0 40 / 6.01 6.06 6.08 6.03

40 0 / 6.15 6.04 6.00 6.04

40 40 / 6.01 5.88 5.78 5.69

Table 1. Evaluation data WER (%) obtained with different adapta-
tion algorithm. 100+: the amount of enrollment data per speaker is
around 240 seconds for Nov92 and 100 seconds for Nov93 .

Overall we see that both eigenvoice and weight adaptations re-
quire 10 or less latent vectors to express the speaker variability. Here
we should remark that the preprocessing contains VTLN and thus re-
moves one of the major factors in inter-speaker variability.

The fact that with only 2 latent vectors, eigenvoices performs
better than NMF could be related to the lower dimensionality of the
latent vectors for NMF (weights) compared to those for eigenvoices
(all Gaussian means). The lower dimensionality may result in some-
what less expressive latent vectors. Once sufficient latent vectors are
used, the two methods perform almost identical.

The larger dimensionality of the eigenvoices may also make
the eigenvoices more susceptible to overfitting when only limited
amounts of enrollment data are available. This may explain the in-
crease in WER when using 40 instead of 10 eigenvoices with only
3 seconds of enrollment data for the eigenvoice system, whereas the
weight adaptation (with lower dimensional latent vectors) shows no
signs of overfitting.

Combining the two methods with only 2 latent vectors shows no
improvement over the eigenvoice approach. The most likely reason
for this is that both approaches use their single degree of freedom
to model the same inter-speaker variability. However, with more
degrees of freedom, combining the two adaptation schemes shows
consistent improvements over both the eigenvoice and the weight
adaptation scheme on itself. For example, with 10 degrees of free-
dom and 3 seconds of enrollment data, the performance of the recog-
nition system is improved by 1.3% relatively over the best single
adaptation method, resulting in a 7.9% improvement compared to
the SAT baseline. When more degrees of freedom (40) and more
enrollment data (100+) are available, this improvement increases to
5.8% compared to the eigenvoice approach and 10.7% compared to
the SAT baseline. Furthermore, the combination with less degrees
of freedom (J = 10, L = 10) gives better results than either the
eigenvoice or the weight adaptation with more degrees of freedom
(J = 40, L = 0 and J = 0, L = 40 respectively).

These results show that NMF-based Gaussian mixture weight
adaptation and eigenvoice-based mean adaptation are compatible
with each other. NMF weight-based adaptation is complementary
to eigenvoice speaker adaptation. By applying the combination of
these two adaptation techniques, more speaker related information
is available. We observe that the eigenvoice adaptation keeps the
Gaussians that are unneeded for a certain training speaker close to
their SI positions. This may create a source for undesirable over-
lap of state densities. The NMF weight adaptation can suppress

these Gaussians by assigning a relative small value or zero to the
corresponding Gaussian mixture weights.

6. CONCLUSIONS

This paper described a novel model space fast speaker adaptation
algorithm which adjusts both the Gaussian means and the Gaussian
mixture weights. The adapted Gaussian means are expressed as a
linear combination of eigenvoices. Similarly, the Gaussian mixture
weights are expressed as a weighted sum over a set of latent vec-
tors. By exploiting the pre-learned Gaussian mean and Gaussian
mixture weight relations, the statistics for both observed and un-
observed acoustic model parameters are updated, resulting in good
generalization. By expressing the model parameters in function of
a small set of eigenvoices or latent weight vectors, the degrees of
freedom are reduced, resulting in fast adaptation.

The two ML-based techniques are compatible with each other.
With sufficient degrees of freedom, the combination of these two
techniques outperforms the eigenvoice speaker adaptation technique
alone consistently for both large or small amounts of enrollment
data. The combination with less degrees of freedom yields better
performance than the eigenvoice or NMF weight adaptation alone
with more degrees of freedom.
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