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ABSTRACT

The Subspace GMM acoustic model has both globally shared

parameters and parameters specific to acoustic states, and this

makes it possible to do various kinds of tying. In the past

we have investigated sharing the global parameters among

systems with distinct acoustic states; this can be useful in a

multilingual setting. In the current paper we investigate the

reverse idea: to have different global parameters for different

acoustic conditions (gender, in this case) while sharing the

acoustic-state-specific parameters. We experiment with mod-

eling gender dependency in this way, and show Word Error

Rate improvements on a range of tasks and comparable re-

sults to the Vocal Tract Length Normalization (VTLN)-like

technique Exponential Transform (ET).

Index Terms— Subspace Gaussian Mixture Models, gen-

der dependency modeling

1. INTRODUCTION

The Subspace Gaussian Mixture Model (SGMM) [1] is a way

of compactly representing a large collection of mixture-of-

Gaussian models. Let us write a conventional Gaussian mix-

ture model as:

p(x|j) =
Mj∑

i=1

wjiN (x; μji,Σji), (1)

where j is the state and the parameters of the model are

wji, μji and Σji. The basic version of the SGMM, without

speaker adaptation or “sub-states”, is:

p(x|j) =
I∑

i=1

wjiN (x; μji,Σi) (2)

wji =
exp(wT

i vj)∑
i exp(wT

i vj)
(3)

μji = Mivj , (4)

where the vectors vj (normally of dimension around S=40)

describe in some abstract space how the states differ from

each other; I is the number of Gaussians in the shared GMM

structure, and is normally several hundred The parameters of

the system are the state-specific parameters vj , and the glob-

ally shared parameters wi, Mi and Σi (these are full covari-

ances). It is described in [1] how to extend this with sub-states

(replacing vj with mixtures vjm and sub-state weights cjm),

and how to add speaker-dependent mean offsets via “speaker

vector” parameters v(s) and “speaker projections” Ni. We

sometimes speak of a Universal Background Model (UBM).

This is a mixture of full-covariance Gaussians of size I that

is used to initialize the system and to prune the Gaussian in-

dices during training and decoding. The UBM Gaussians cor-

respond to the indices i, and when we speak of changing the

number of UBM Gaussians, this involves changing the num-

ber of parameters Ni and so on. As described in [2], it is pos-

sible to use the SGMM framework to improve speech recog-

nition performance by leveraging out-of-language data. The

basic idea is to share all the global parameters between lan-

guages. Since, for smaller systems, most of the parameters

are globally shared, this can lead to more robust parameter

estimates. Furthermore, in many previous works such as in

[3, 4], it was shown that using gender information is always

helpful to improve the ASR performance. In those experi-

ments, the use of a gender dependent model gave between 4

and 8% relative improvement in terms of WER.

In this paper, we explore a related idea, which is to have

different sets of shared parameters for different genders, while

leaving the state-specific parameters vjm gender-neutral. We

expect that this would be more useful when there is a rel-

atively large amount of training data, because in this case

the parameter count tends to be less dominated by the global

parameters (so we would increase the parameter count less,

relatively, by introducing more Gaussians in the UBM). Fur-

thermore, we make a comparison between this technique and

VTLN-like technique Exponential Transform [5]. This pa-

per is organized as follows. Section 2 explains how we im-

plemented gender dependency through the Gaussian pruning

mechanism of the SGMM framework, Section 3 describes our

experimental setup and results, and we conclude in Section 4.

2. GENDER-DEPENDENT SYSTEMS VIA GAUSSIAN
PRUNING

Our experiments were done with the open-source Kaldi

speech recognition toolkit [6]. We note that in SGMM train-
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ing and testing, for efficiency we use a class-independent

GMM to pre-select a subset of typically 10-20 of the Gaus-

sian indices i that have the top-scoring Gaussians. In the

recipes distributed with Kaldi, the Gaussian selection phase

of the SGMM framework tends to be done just once in a

particular stage of system building, and the selected Gaussian

indices are stored on disk. We decided that the simplest way

to implement gender dependency for SGMMs would be to

make it part of the Gaussian selection phase: that is, pre-

allocate certain Gaussian indices (certain values of i) to male,

and certain ones to female. Then, when training or decod-

ing a male utterance, we would limit the Gaussian selection

phase to only the “male” indices, and likewise for female.

This has almost the same effect as doing it in the most natural

and obvious way, which would be to have multiple sets of

global parameters and adding a new index corresponding to

gender on the wi, Mi and Σi quantities (so we would have

wki and so on). The only difference when doing it in the

Gaussian selection phase is that the model may now be at-

tempting to model the state-specific probability of being in a

particular gender, which is not very optimal. That is, ideally

in Equation 3 we would like to normalize per gender, rather

than globally, but in our simple implementation based on

the Gaussian selection mechanism, it is normalized globally.

However, we guess that most acoustic states would have seen

similarly balanced statistics, so the male/female probabili-

ties would usually be about the same (typically 0.5) and this

should have very little effect on the decoded output. We have

verified this experimentally.

We now describe how we adapt the UBM training process

to the gender-dependent setup. Suppose we want a total of

800 Gaussians in the UBM (including both male and female),

and the corpus is reasonably gender-balanced. We cluster

the Gaussians in a traditional HMM-GMM system down to

400, as described in [1]. Then we do four iterations of full-

covariance GMM re-estimation on the training data; this is

done separately for the male and female training data, so we

get two separate UBMs, one for male and one for female.

At this point we merge them into a single UBM with about

800 Gaussians (a few may have been lost due to low counts),

and we record which Gaussian indices correspond to male,

and which correspond to female, in the merged UBM. Com-

pared to other VTLN-like technique Exponential Transform

(ET) [5] which requires another model and another pass of

decoding, our technique is very efficient.

Our training and test data are both annotated with gender

information. During both training and test, we provide the

program that does the Gaussian selection with lists of allow-

able Gaussian indices i for each training or test utterance, and

it writes out the top-scoring Gaussians in those allowable sets.

We were concerned that it might be considered “cheating” to

use gender information during test time. To forestall this ob-

jection, for the English, Spanish and French Global Phone

data (see the experimental section) we classified the test ut-

terances by gender, by comparing the likelihoods obtained

during Gaussian selection based on a male versus female as-

sumption. We got 100% classification accuracy in all cases,

so we can be confident that this “cheating” does not affect our

results1. Since gender-dependent UBMs can be considered

a form of speaker adaptation, we felt that it should be evalu-

ated in conjunction with standard speaker adaptation methods

used in SGMMs. Therefore we did our gender-dependent ex-

periments in a system that had the speaker vectors v(s), and

we also tested with Constrained MLLR (CMLLR) adaptation

and compared the results with another VTLN-like technique

(ET in this case).

3. EXPERIMENTAL SETUP

All our experiments are performed with the Kaldi speech-

recognition toolkit, introduced in [6]. We ran these exper-

iments with version 1.0 of the toolkit. The scripts for the

Resource Management and Wall Street Journal experiments

which we report here, are included with the toolkit (see

egs/rm/s1 and egs/wsj/s1).

3.1. Wall Street Journal experiments

The Wall Street Journal database [7] consists of clean, read

speech recorded with a high quality microphone (we used

the Sennheiser version of the recordings). For results re-

ported in this paper we train on all the SI-284 data— about

80 hours. Our test results are with the Nov’92 and Nov’93

evaluation test sets, using the 20k open vocabulary with non-

verbalized pronunciations. This is the hardest test condition

so the results may seem higher than expected for WSJ. See [6]

for comparison with other published results. We test with a

highly-pruned version of the trigram language model supplied

with the WSJ corpus (pruned from 6.7 million to 1.5 million

entries), since the decoders in Kaldi currently do not support

very large language models. All results we report here are

based on MFCC plus delta plus acceleration features. We

report results with standard mixture-of-diagonal-Gaussian

models, and with SGMMs. We used a dictionary in which

phones were marked with stress information and beginning

and end-of-word information, and built decision trees cor-

responding to each “base phone”, in which questions could

be asked about the stress and word-position information.

The HMM-GMM system had 3349 context-dependent states

and 40 000 Gaussians, and the SGMM systems had 4780

context-dependent states (for SGMM systems, the optimum

number of states tends to be higher) and 35 000 sub-states

(i.e. 35 000 vectors vjm). The gender-independent UBM

had 600 Gaussians (I = 600) and the phonetic subspace

dimension (S) was 50; the speaker subspace dimension,

where applicable, was 39. For gender-dependent models,

1The number of speakers in the English, Spanish and French test sets was

5, 10 and 8 respectively, so this is less surprising than it seems.
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Table 1. Results on Wall Street Journal: %WERs

Model System %WER

/adaptation Id Nov’92 Nov’93

HMM-GMM tri3a 10.7 13.8

+CMLLR tri3a 9.5 12.1

SGMM+spk-vecs sgmm3b 7.8 10.4

+CMLLR sgmm3b 7.7 10.0

SGMM+spk-vecs+GD sgmm3c 7.5 9.5

+CMLLR sgmm3c 7.6 9.2

SGMM+spk-vecs+ET sgmm3c 7.5 9.9

+CMLLR sgmm3c 7.4 9.8

we used 800 UBM Gaussians (400 per gender)2. We use

an acoustic weight of 1/16 for GMM-based systems, 1/11

for speaker-independent SGMM-based systems, and 1/12

for speaker-adapted SGMM-based systems. As seen in Ta-

ble 1, gender dependency improves results by 0.1% and 0.8%
absolute on the Nov’92 and Nov’93 test sets respectively,

comparing the sgmm3b and sgmm3c systems with CMLLR

adaptation. Although this is not a very large improvement, it

is an improvement compared with our currently best SGMM

system, we consider it worthwhile. We repeated the gender

dependent decoding with gender-specific normalization of

the weights wji (actually, wjmi when we consider the sub-

states). In two out of the four gender-dependent decoding

experiments in Table 1 the WER was 0.1% worse, in one it

was 0.1% better, and in one it was unchanged. This confirms

our intuition that global versus gender-specific normalization

does not make a big difference. To clarify: by gender-specific

normalization of the weights we mean ensuring that within

each sub-state j,m, the weights wjmi sum to one for the

indices i corresponding to each gender. Furthermore, com-

pared to the results with ET, we observed worse results on

the Nov’92 test set (0.2% absolute) and better results on the

Nov’93 test set (0.6% absolute).

3.2. Resource Management experiments

The Resource Management (RM) data set [8] is a medium-

vocabulary data set recorded under clean conditions. There

are 3.9 hours of training data. The language model used in

testing is a word-pair grammar supplied with the corpus. We

report results averaged over six test sets, as described in [6];

in total, the testing data we used is about 1.3 hours long. All

results are reported on top of MFCC plus delta plus acceler-

ation features. The models are triphone models with context-

dependency and tree clustering. The GMM baseline system

had 1459 context-dependent states and 9000 Gaussians, and

the SGMM systems had 2039 context-dependent states and

2Note: we aim to minimize WER under both conditions, rather than com-

pare at equal parameter counts. The 600 Gaussians in the baseline UBM was

roughly tuned in order to minimize WER; the 800 Gaussians in the gender-

dependent UBM represents our best guess at what would minimize WER.

Any bias in this procedure would tend to favor the baseline rather than the

experimental system.

Table 2. Results on Resource Management: %WERs

Model System %WER

/adaptation Id (average)

HMM-GMM tri2a 4.0

+CMLLR tri2a 3.6

SGMM sgmma 3.3

+CMLLR sgmma 2.9

SGMM+spk-vecs sgmmb 2.8

+CMLLR sgmmb 2.6

SGMM+spk-vecs+GD sgmmc 2.8

+CMLLR sgmmc 2.6

7500 sub-states. The gender-independent SGMM systems

had 400 UBM Gaussians; the gender-dependent ones had 500

(250 per gender). The phonetic subspace dimension S was 40

and the speaker subspace dimension (if using speaker vectors)

was 39. We used an acoustic scale of 1/12 for GMM-based

systems and 1/10 for SGMM-based systems. In this case we

did not see any improvement from gender dependency; there

was no change in Word Error Rate (WER). In fact, we did

not expect to see improvements with so little training data.

The issue is that adding gender dependency doubles the num-

ber of global parameters (assuming we keep the same number

of UBM Gaussians). Of course, after tuning we have fewer

UBM Gaussians per gender than we did for the gender inde-

pendent system, since with so little data we cannot afford to

train many UBM Gaussians per gender. In addition, we did

not notice in time that the RM database is very gender unbal-

anced (twice as many male as female speakers) and these ex-

periments were run with an equal number of UBM Gaussians

for male and female. We reran the gender dependent decoding

with gender-dependent normalization of the substate-specific

weights. This did not affect results to within the rounding

error, for these experiments.

3.3. GlobalPhone experiments

GlobalPhone is a multilingual text and speech corpus that

covers speech data from 20 languages, including Arabic, Bul-

garian, Chinese (Mandarin and Shanghai), Croatian, Czech,

English, French, German, Japanese, Korean, Polish, Por-

tuguese, Russian, Spanish, Swedish, Tamil, Thai, Turkish,

and Vietnamese [9]. The corpus contains more than 400

hours of speech spoken by more than 1900 adult native

speakers. GlobalPhone is available from ELRA, the Euro-

pean Language Resources Association. The read articles

cover national and international political news as well as eco-

nomic news from 1995-2009. The speech data is available in

16bit, 16kHz mono quality, recorded with a close-speaking

microphone. Most transcriptions are internally validated and

supplemented by special markers for spontaneous effects like

stuttering, false starts, and non-verbal effects. For this work

we selected English, French, and Spanish from the Global-

Phone corpus. Each language has about 20 hours of training
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data, and we report results on the development sets which are

about 2 hours long. To build the language models we used

our Rapid Language Adaptation Toolkit (RLAT) [10] to crawl

for each language several websites with link depth 20 in up

to twenty days e.g. as in [11]. Since Kaldi currently only

supports decoding with relatively small language model, we

used the SRI language model toolkit to prune all the language

models using an entropy criterion [12]. Table 3 gives a break-

down of the trigram perplexities, OOV rate, and vocabulary

size for the three languages.

Table 3. Perplexities (PP), OOV rate and vocabulary size for

English, French and Spanish

Languages PP OOV Vocabulary

English (EN) 340 0.5% 60k

French (FR) 423 2.4% 65k

Spanish (SP) 224 0.1% 19k

For acoustic modeling, we used Kaldi to train HMM-

GMM and SGMM systems. These systems used MFCC plus

delta and acceleration features. The HMM-GMM-systems

had 9000 Gaussians and about 1220 context-dependent

acoustic states. The SGMM systems had 7500 sub-states,

and about 2100 context-dependent states. The gender-

independent SGMM systems had 400 UBM Gaussians (i.e.

I=400), and the gender-dependent systems had 500 UBM

Gaussians. For English and French there were 250 per gen-

der, but for Spanish, because of unbalanced data (9 female

and 7 male) we decided to train 290 Gaussians for female

speakers and 210 for male.

Table 4. WERs for English, French, and Spanish systems

Systems English French Spanish

HMM-GMM 17.4 26.5 21.1

SGMM 13.3 23.1 18.6

SGMM+spk-vector 11.8 22.5 17.3

+CMLLR 11.4 22.1 16.5

SGMM+spk-vector+GD 11.0 22.6 16.8

+CMLLR 10.7 21.9 15.9

SGMM+spk-vector+ET 10.9 21.8 16.5

+CMLLR 10.8 21.7 16.4

By adding gender dependency, we can see from Table 4

that WER from the final pass (after applying CMLLR) is im-

proved 0.7%, 0.2%, and 0.6% absolute for English, French,

and Spanish respectively. Compared to the results with ET,

we got almost the same results for all languages. For English

and Spanish, we obtained 0.1% and 0.5% absolute improve-

ment but 0.1% absolute degradation in the case of French.

4. CONCLUSIONS

We have described a simple way to model gender variation

within the SGMM framework. It consists of allocating cer-

tain Gaussians in the UBM to male, and certain ones to fe-

male, and enforcing this allocation during the Gaussian selec-

tion process. Experiments on five different training data sets

show that the technique almost always gives improvements

over gender-independent SGMM based systems, with a fairly

typical improvement being 0.4% absolute. Furthermore, we

got comparable results compared to the VTLN-like technique

Exponential Transform which was shown in [5] outperform

the conventional VTLN technique. Since the technique is ex-

tremely simple to implement, it may become part of our stan-

dard SGMM recipes; however, we should first compare with

more traditional gender-dependent approaches such as [3, 4],

and check whether the gains persist after discriminative train-

ing. The Gaussian selection based implementation that we de-

scribe here is not very optimal as we do not properly normal-

ize the likelihoods for the genders (that is, the model is trying

to predict the the male versus female likelihoods, which is not

what we want). However, when we tried with normalizing the

likelihoods per gender in decoding time, we did not see any

further improvement in WER. We may in future investigate

the application of this technique to other sources of variation,

such as accent and acoustic condition, and its combination

with multilingual systems.
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