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ABSTRACT

The effectiveness of unsupervised speaker adaptation is typically
limited by errors in the estimated transcription of the adaptation
data. Previous work has mitigated this negative effect by using only
those sections of the adaptation data which are transcribed with rel-
atively high confidence. In this work, phoneme correctness pre-
dictions are integrated into a discriminative unsupervised speaker
adaptation procedure. Significant accuracy improvements (over the
equivalent likelihood-based technique) are observed when using dis-
criminative unsupervised speaker adaptation in combination with
support vector machines to predict phoneme correctness.

Index Terms— Discriminative speaker adaptation, confidence
measures, SVM, minimum phone error.

1. INTRODUCTION

Speaker adaptation techniques based upon optimisation of model
likelihood, e.g. maximum likelihood linear regression (MLLR, [1])
have been successful in supervised and unsupervised scenarios. Dis-
criminative speaker adaptation methods differ from likelihood-based
techniques in that they alter the acoustic model to optimise a discrim-
inative measure, e.g. the minimum phone error criterion (MPE, [2]).
This paper extends previous work on unsupervised linear regression
speaker adaptation using the MPE criterion [3]. More specifically,
this work demonstrates how estimation of the correctness of each
phoneme in the estimated transcription can be used to mitigate the
negative impact of incorrectly transcribed phonemes in the cases of
both MLLR and MPE-based linear regression (MPELR). Further, it
is shown that, with this mitigation technique in place, significant ac-
curacy improvements over MLLR are obtained using MPELR.

The paper is structured as follows. Section 2 introduces the
theory and implementation of MPELR. Section 3 explains how
correctness estimates may be integrated into the MPE criterion
to yield a correctness-adjusted MPE criterion suitable for unsu-
pervised speaker adaptation. The correctness estimation methods
used in this work are introduced in Section 4. Section 5 describes
the large vocabulary recognition system used to evaluate the pro-
posed technique. An evaluation of the correctness prediction and
correctness-adjusted MPELR methods is presented in Section 6. A
concluding summary and proposals for future research are found in
Section 7.

2. MPE-BASED LINEAR REGRESSION

The linear regression speaker adaptation framework [1] uses adap-
tation data from a speaker to estimate one or more affine transforms
of the SI acoustic model parameters. MPE-based linear regression
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adaptation deploys the same adaptation framework as MLLR, but the
affine transforms are chosen to optimise the MPE criterion RMPE(θ)
(Equation 1) instead of the model likelihood function.
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1 ) is the Levenshtein distance between the cor-

rect transcription and hypothesis wN
1 . The symbol θ represents the

model parameters and R is the number of training set examples. Re-
estimation equations for the transform parameters are derived in [3]
and reused in this work.

The statistics necessary for MPELR transform estimation are
calculated via a lattice-based implementation described in [2]. This
work follows that implementation, with the exception that the sym-
metrically normalised frame error (SNFE, [4]) approximation is used
since it has been shown to yield improved estimation of errors when
compared to the error approximation method introduced in [2].

To address the issue of overfitting the adaptation data, a version
of the I-smoothing regularisation technique, previously introduced in
the context of MPE acoustic model estimation has also been applied
to MPE-based acoustic model adaptation in [5], a technique adopted
in this work. Additionally, in this work the MPELR transform esti-
mation procedure adopts the same complexity control mechanism as
MLLR to control the amount and type of MPELR transforms esti-
mated. This ensures a fair comparison between MLLR and MPELR
since the number of transforms are identical in each case.

3. CORRECTNESS-ADJUSTED MPELR

The idea behind correctness-adjusted MPELR is to disregard errors
assigned with respect to labels of the reference transcription which
are predicted to be incorrect. The correctness-adjusted MPE crite-
rion is defined by Equation 2.
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Here LC(wN
1 , ŵ

M(r)
1 ) is a correctness-adjusted error function which

incorporates knowledge of the predicted correctness associated with

the estimated reference transcription labels ŵ
M(r)
1 . Since only a

refinement of the error function is involved, correctness-adjusted
MPELR transforms are estimated using the same theory as standard
MPELR. Figure 1 illustrates the correctness-adjusted modification to
the Levenshtein error approximation. Section A of Figure 1 shows
an alignment of an estimated reference transcription and a hypoth-
esis alignment. The overall SNFE of the hypothesis is 2, the sum
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of the SNFE for each aligned hypothesis label. Section B of Figure
1 shows the predicted correctness associated with each label of the
estimated reference transcription, where 1 indicates a prediction of
‘correct’ and 0 denotes a prediction of ‘incorrect’.

Reference aa t

aa sHypothesis 

Length (frames) 80                           70                        60

 0                            70                        60Frame error 

Normalisation 
factor 

  80                            70                        60

Symmetrically 
normalised frame error 

 0                            1.0                       1.0

n

k

Correctness  1                              0                         1

Correctness-adjusted 
frame error   0                              0                        60

Correctness-
adjusted error     0                              0                       1.0

A 

B 

Fig. 1. (A) Standard and (B) correctness-adjusted error approxima-
tions.

The correctness-adjusted frame error is a modified version of the
frame error which assigns errors only with respect to labels of the
reference alignment which are predicted to be correct. For each seg-
ment of the hypothesis alignment, the correctness-adjusted frame er-
ror is zero if the segment overlaps with a label of the reference align-
ment which has an ‘incorrect’ prediction and equal to the standard
frame error otherwise. The correctness-adjusted error for each hy-
pothesis segment is then the normalised correctness-adjusted frame
error, where the normalisation factor is the length of the shorter of
the overlapping labels. The overall correctness-adjusted error for
the hypothesis is then the sum of the correctness-adjusted error over
each segment. Modifying the error in this way reduces the impact of
errors associated with labels of the estimated reference transcription
which are predicted as incorrect.

The question arises of how to formulate the I-smoothing prior
distribution over the transform W in the case of correctness-adjusted
MPELR. In this work, a correctness-adjusted prior pC(W), of the
form described by Equation 3, is used. This prior is similar to the
standard MPELR prior with the exception that correctness-adjusted
occupancies replace standard occupancies.

log pC(W) =
τ I

2

∑
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R∑
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Correctness-adjusted occupancies are given by Equation 4, where
C(t) is the correctness prediction associated with the label overlap-
ping frame t in the most likely alignment of the reference transcrip-

tion ŵ
M(r)
1 .

γC
m(t, r) =

{
0 if C(t) incorrect

γm(t, r) otherwise

}
(4)

The quantity k is a normalisation term used to ensure the prior prob-
ability distribution sums to one and Cm is the covariance of compo-

nent m. Note that the prior is formulated for each regression class
R.The t-th frame of the r-th training utterance is denoted by ot(r)
and γm(t, r) is the posterior probability that state m is the t-th el-
ement of the hidden state sequence. The I-smoothed correctness-
adjusted MPE criterion is formulated by subtracting the prior de-
fined above (Equation 3) from the correctness-adjusted MPE crite-
rion (Equation 2). The parameter τ I determines the influence of the
prior term.

With regard to complexity control for correctness-adjusted
MPELR, errors corresponding to much of the data may be dis-
regarded. To introduce sensitivity to the disregarded data, the
correctness-adjusted occupancies of Equation 4 replace the standard
occupancies in the complexity control framework.

4. CORRECTNESS PREDICTION

Much research has been done to identify suitable features (often re-
ferred to as confidence measures) and classifiers for correctness pre-
diction in speech recognition. Word and phoneme posterior proba-
bilities are used for correctness prediction in this work. These pos-
terior probabilities are derived from phoneme-marked word lattices
as described in [6]1.

Using a single feature, e.g. phoneme posterior, it is possible
to construct a simple phoneme correctness classifier by defining a
threshold. Such a classifier will be used to provide a useful com-
parison in the experimental work of this paper. Since correctness
is a binary classification task it is possible to deploy support vector
machines (SVMs). In the experimental work reported here, SVMs
are constructed for phoneme correctness classification using subsets
of the following features: phoneme posterior, posterior of containing
word, posterior of adjacent (previous and following) phonemes, pos-
terior of adjacent words, phoneme acoustic likelihood, phoneme du-
ration, containing word duration, number of phonemes in containing
word, phoneme identity, adjacent phoneme identities, and identities
of all phonemes in containing word. The phoneme identity is repre-
sented by a sparse vector whose dimensions correspond to phonemes
in the phoneme inventory. The vector has value 1 for the dimension
corresponding to the associated phoneme, and 0 elsewhere. The
adjacent phoneme identities and identities of all phonemes in the
containing word are represented by similar sparse vectors. All non-
sparse dimensions of the feature vector are scaled and biased to have
zero mean and unit variance on the training dataset. The same scales
and biases are applied to test set features.

In [7], where simlar SVMs are constructed for word correct-
ness prediction, the use of the non-linear radial basis function (RBF)
kernel provides improvements in classification accuracy when com-
pared with a linear kernel. Motivated by this observation, the RBF
kernel (parametrised by the variable γ) will be used here. Due to the
size of the datsets used in this work (of the order of a hundred thou-
sand datapoints), an efficient algorithm called ‘cutting-plane sub-
space pursuit’ [8] is used to train the SVMs.

5. EXPERIMENTAL SYSTEM

A conversational speech transcription (CTS) system is used to eval-
uate the techniques described above. Training and development test
datasets are sourced from the Fisher corpus. The evaluation dataset
is the NIST RT03 English conversational speech dataset. Table 1

1In the terminology of the cited report, the maximal frame posterior mea-
sure is used.
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summarises these datasets, detailing the number of speakers and
their volume.

Dataset Speakers Volume (hours)

fisher_train 8259 1007.2
fisher_devtest 91 5.7

rt03_eval 144 6.2

Table 1. Training, development and evaluation datasets.

The system uses 13 Mel-frequency-based perceptual linear
prediction coefficients (and their first and second-order time deriva-
tives) to represent the speech signal. Speaker and channel-specific
cepstral mean and variance normalisation is applied to these fea-
tures. The acoustic models are state-clustered triphone HMMs
with three emitting states and left-to-right topology, trained using
the fisher_train dataset and the maximum likelihood (ML)
criterion. A total of 14, 368 tied states are used and state output
distibutions are 16-component Gaussian mixture models.

The recognition dictionary contains 48, 850 words. An interpo-
lated trigram language model is used which is based upon compo-
nent LMs derived from the HUB4 LM96 broadcast news text source
and the fisher_train dataset.

5.1. System operation

The evaluation system uses three stages for recognition. The first
stage uses the unadapted acoustic models to provide a transcription
of the test data. This transcription is then used as input to the second
stage, where the acoutic models are adapted using several passes of
MLLR adaptation. A total of five passes of MLLR adaptation are
used, where the adapted acoustic models are used both as a starting
point in the subsequent adaptation pass, and to estimate the tran-
scription used in the subsequent adaptation pass. Six iterations of
expectation-maximisation are used in each MLLR adaptation pass.
In the third stage, MPELR is used to further adapt the acoustic mod-
els. The fifth-pass MLLR-adapted models are used as a starting
point, and to estimate the transcription used here.

5.2. Adaptation configuration

The adaptation procedure alters only the mean of each component
of the acoustic model. A regression tree comprising 64 base classes,
block diagonal transforms and a node occupancy threshold of 1600
are used.In the case of MPELR, model-marked lattices (‘denomi-
nator’ lattices) are generated using a bigram language model (de-
rived from the trigram used in recognition) and the fifth-pass MLLR-
adapted acoustic models. The lattices are subsequently pruned to a
maximum density of 500 arcs per second, retaining only the lattice
paths of highest posterior probability. ‘Numerator’ lattices are gen-
erated using the fifth-pass MLLR-adapted acoustic models and their
estimated transcription. The numerator lattices are merged into the
pruned denominator lattices to give the ‘consolidated’ lattices used
in MPELR. An acoustic model scaling factor of 1

52
and a language

model scaling factor of 1
4

(maintaining the ratio of 1
13

used in recog-
nition) are used in transform estimation to broaden the distribution
of posterior probabilities. An I-smoothing factor τ I of 0.2, a learn-
ing rate E (see [5]) of 1.0 and forty iterations of MPELR transform
estimation are used.

When using correctness-adjusted MPELR, the consolidated lat-
tices and the fifth-pass MLLR estimated transcription are used to

calculate the word and phoneme posterior probabilities described in
Section 4.

6. EVALUATION

6.1. Correctness estimation

To evaluate the correctness estimation procedures used in this work,
each phoneme in the estimated transcription is firstly marked as cor-
rect or incorrect. This reference is then used to measure the error rate
(correctness error rate, CER) of a particular correctness classifier.

SVM correctness classifiers are trained using a subset of the
fisher_devtest dataset comprising 20, 000 phonemes and
tested on a separate held-out subset comprising 141, 876 phonemes
(referred to as fisher_devsub1). Table 2 displays the per-
formance (on fisher_devsub1 and rt03_eval) of SVM
classifiers which use different input feature spaces. As the rows of
the table are descended, more features are added to the input feature
space. So e.g. the features corresponding to the second row include
the word duration in addition to the word and phone posteriors of
the current, previous and next word and phoneme. The parameter
γ is optimised on the set fisher_devsub1 using a grid search
procedure.

Features γ
CER(%)

fisher_ rt03_
devsub1 eval

Posteriors (current and adjacent
0.1 21.7 21.7words and current and adjacent

phonemes)

+ duration of containing word 0.2 21.6 21.8
+ number of phonemes

0.2 21.2 21.3
in containing word

+ identity of phonemes
0.1 20.8 21.3

in containing word

+ phoneme duration 0.1 20.8 21.3
+ phoneme identity 0.05 20.6 21.3

+ adjacent phoneme identities 0.03 20.6 21.0
+ phoneme acoustic likelihood 0.03 20.5 21.1

Table 2. Performance of SVM classifier with varying imput features.

To investigate the impact of larger training datsets, SVM cor-
rectness classifiers are trained using several different subsets of the
fisher_devtest dataset (comprising 20, 000, 60, 000, 100, 000
and 150, 000 phonemes) and tested on a separate held-out subset
comprising 50, 000 phonemes (referred to as fisher_devsub2).
These classifiers use all the features mentioned above and a γ
factor of 0.03. Table 3 displays their performance on the datsets
fisher_devsub2 and rt03_eval.

Table 4 compares the performance (on rt03_eval) of the
classifier which uses a posterior threshold (0.3, optimised on
fisher_devtest) with the SVM trained on 150, 000 phonemes
detailed in Table 3. Classification of all phonemes as correct yields
the ‘dumb baseline’ of Table 4.

6.1.1. Discussion

The results of Table 4 indicate the superiority of the SVM correct-
ness classifier over the posterior-thresholded classifier. The analysis
of Table 2 indicates that this is due, in part at least, to the use of addi-
tional features to the phoneme posterior. The use of an RBF kernel to
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Volume of training dataset (phonemes)
CER(%)

fisher_ rt03_
devsub2 eval

20, 000 20.7 21.1
60, 000 20.6 21.0
100, 000 20.4 20.7
150, 000 20.4 20.8

Table 3. Performance of SVM classifier as training data varies.

Classifier CER(%)

Dumb baseline 24.0
Posterior (threshold=0.3) 21.8

SVM (γ = 0.03) 20.8

Table 4. Performance of correctness classifiers (rt03 eval).

induce a non-linear decision boundary may also contribute to the im-
proved correctness classification over the posterior-thresholded clas-
sifier (which uses a linear decision boundary).

6.2. Unsupervised adaptation

Correctness-adjusted MPELR is evaluated when used in the third
stage of recognition. For comparison, the performance of correctness-
adjusted MLLR technique is also measured. Correctness-adjusted
MLLR is implemented by by replacing standard occupancies with
the correctness-adjusted occupancies during transform estimation.
The techniques are evaluated using the posterior threshold and SVM
correctness predictors evaluated above. The ideal predictor (which
outputs the reference correctness for each phoneme in the estimated
transcription) and no predictor (i.e. standard MLLR and MPELR)
scenarios are also included for comparative purposes.

The WER (on rt03_eval) of the unadapted system and the
fifth-pass MLLR system are 36.6% and 31.8% respectively. Ta-
ble 5 records the performance (on rt03_eval) of the adaptation
methods described above when used in the third stage of recogni-
tion. Each pair of systems with the same correctness predictor is
compared. Where a significant difference is found the performance
of the better system is indicated in bold font. Significance is set at
the 95% confidence level using the matched pairs sentence segment
word error test [9].

Correctness predictor
WER (%)

MLLR MPELR

none 31.8 31.6
posterior threshold 31.5 31.4

SVM 31.6 31.2
ideal 30.4 29.3

Table 5. Performance of third stage adaptation techniques.

6.2.1. Discussion

The results of Table 5 indicate that, without use of any correctness
predictions, MPELR yields a small, but not significant, performance
improvement over MLLR. Inspection of the remaining rows of Ta-
ble 5 reveals that the incorporation of correctness predictions leads

to improved performance in the case of both MLLR and MPELR.
In the case of ideal correctness predictions, a relatively large (1.1%
absolute WER) performance improvement is observed when com-
paring MPELR with MLLR. In this case, where the effect of errorful
transcriptions has been nullified, the benefit of using a discriminative
criterion over the likelihood criterion is observed.

In the realistic scenarios of imperfect correctness predictions,
and comparing the systems which use the same predictor, MPELR
yields accuracy improvements over MLLR in all cases. This im-
provement is significant in the case of the SVM correctness predic-
tor. Further, use of the SVM predictor yields improved accuracy
(over the posterior threshold predictor) in the case of MPELR but
slightly degraded accuracy in the case of MLLR. This evidence indi-
cates that use of improved correctness prediction is of greater benefit
in the case of MPELR than in the case of MLLR. The small degra-
dation observed in the case of MLLR merits further investigation.

7. CONCLUSIONS

This paper has demonstrated how correctness predictions may be
incorporated into unsupervised discriminative speaker adaptation
to deliver significantly improved accuracy over the equivalent
likelihood-based procedure. The relationship between the per-
formance of correctness-adjusted MPELR and the nature of the
correctness classifier (in terms of performance, and false negative
and positive tradeoffs) should be investigated in future work.
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