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ABSTRACT

This paper presents a noise tracking and estimation algorithm for

highly non-stationary noises using the Bayesian on-line spectral

change point detection (BOSCPD) technique. In BOSCPD, the lo-

cal minima search window update technique of minima controlled

recursive averaging (MCRA) algorithm is made a function of spec-

tral change point detection. The novelty of this algorithm is that it

can detect the rapid changes instantly and quickly update the non-

stationary noise estimate compared to the MCRA-based algorithms.

The BOSCPD algorithm shows improvement in objective quality

measures in terms of higher SNR and lower output distortion scores

for speech enhancement. It is also tested to track and compensate

for rapidly varying noises in on-line automatic speech recognition

(ASR) using the Aurora 2 speech database. The simulation results

show significant improvement in recognition accuracy compared to

the baseline MCRA technique.

Index Terms— Non-stationary noise tracking and estimation,

Bayesian on-line change point detection, on-line automatic speech

recognition, joint additive and channel noises compensation, MCRA

1. INTRODUCTION

The state-of-the-art MCRA [1] is a single channel noise tracking

algorithm. It tracks the minimum of the noisy speech power spec-

trum within a finite search window. However, the major disadvan-

tage of MCRA is that it takes more time than the minima search

window duration to update the noise estimate when the noise floor

increases abruptly and stays at that level [2]. Several improved ver-

sions of MCRA, e.g., MCRA2 [2], improved MCRA (IMCRA) [3],

enhanced MCRA (EMCRA) [4] have been proposed for minimizing

this delay problem. These algorithms reduce the delay in adaptation

to new conditions to some extent compared to the MCRA. However,

they fail to minimize this delay significantly and it still remains a

challenging problem to speech researchers.

Recently, the Bayesian on-line change point detection (BOCPD)

technique has found its application for real-world time series, e.g.,

finance, volatility in stock market, oil drilling, robotics, and satellite

fault detection and tracking [5]. One salient feature of BOCPD is

that it allows one to express uncertainty about the number and loca-

tion of change points. This property makes it easy to be used as a

model for a frame-based causal predictive filter, i.e., to generate an

accurate predictive distribution of the next unseen spectral data of

the speech frame, given only the statistical properties of the already

observed speech frames.

In this paper, we propose a new method using the BOCPD tech-

nique to minimize the delay problem of the MCRA. The proposed

method detects the abrupt changes in speech spectral properties, and

becomes a function for the local minima search window process.

The BOSCPD technique significantly reduces the delay problem in

detecting abrupt changes in MCRA-based algorithms. And also it

does not overestimate the noise spectrum. The proposed BOSCPD

technique is tested for speech enhancement and compensation in the

front-end of an on-line ASR and it shows better recognition results

than the MCRA.

This paper is organized as follows. Section 2 describes the

MCRA method. The BOCPD method is presented in section 3.

Section 4 presents the proposed BOSCPD method. Front-end pro-

cessing of on-line ASR is shown in section 5. These are followed by

the experimental results and conclusions.

2. MCRA FOR SINGLE CHANNEL NOISE TRACKING

Let y(n) = x(n) + d(n), where y(n) is the noisy speech signal,

x(n) is the clean signal and d(n) is the uncorrelated additive noise.

The short-time Fourier transform (STFT) Y (m, k) of the noisy sig-

nal can be calculated by first applying a window w(n) to N samples

of y(n) and then computing the N -point FFT of the windowed sig-

nal:

Y (m, k) =

N−1∑
λ=0

y(λ+mM)w(λ)e−j 2π

N
λk, (1)

where m is the frame index, k(k = 0, 1, 2, ..., N − 1) is the fre-

quency bin index, and M is the frame update step. The periodogram

P (m, k) of Y (m, k) can be estimated using a first-order recursive

formula as follows:

P (m, k)=α(m, k)P (m−1, k) + (1−α(m, k))|Y (m, k)|2, (2)

where α(m, k) is a time and frequency dependent smoothing param-

eter.

In MCRA, the smoothing parameter α(m, k) is made dependent

on the conditional speech presence probability based on the follow-

ing hypothesis:

Hk
0 : σ̂2

d(m, k)=αdσ̂
2
d(m− 1, k) + (1− αd)|Y (m, k)|2,

Hk
1 : σ̂2

d(m, k)=σ̂2
d(m− 1, k), (3)

where αd (0 ≤ αd ≤ 1) is a smoothing parameter. Hk
0 and Hk

1

designate hypothetical speech absence and presence, respectively,

in the mth frame of the kth frequency bin. σ2
d(m, k) denotes the

variance of the noise in the kth frequency bin [1].

In Eq. (3), the noise estimate is updated whenever speech is ab-

sent, otherwise it is kept constant. The noise power spectral density

(PSD) can be estimated in the mean-square sense as follows:
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σ̂2
d(m, k)=α̃d(m, k)σ̂2

d(m−1, k) + [(1−α̃d(m, k))]|Y (m, k)|2, (4)

where α̃d(m, k) = αd+(1−αd)p(m, k) is a time-varying smooth-

ing parameter and it varies within the range αd ≤ α̃d(m, k) ≤ 1.

Accordingly, the noise spectrum can be estimated by averaging

past spectral power values, using a smoothing parameter that is ad-

justed by the signal presence probability as follows:

p̂(m, k) = αpp̂(m− 1, k) + (1− αp)I(m, k), (5)

where αp (0 < αp < 1) is a smoothing parameter, I(m, k) = 1
if Sr(m, k) > δ and I(m, k) = 0 otherwise. Here Sr(m, k) =
S(m, k)/Smin(m, k) is the ratio of the local energy of the noisy

speech and its derived minimum. δ is a threshold for speech presence

[1],

S(m, k) = αsS(m− 1, k) + (1− αs)|Y (k, l)|2, (6)

where αs (0 < αs < 1) is a smoothing parameter. Smin(m, k) is

defined as follows:

Smin(m, k) = min{S(j, k)}; for m− 2L < j < m, (7)

which is calculated [4] as

Smin(m, k)=

⎧⎨
⎩
S(0, k) if m = 0,
min [Smin(m−1, k), S(m, k)] if m%L �= 0,
min [Stmp(m−1, k), S(m, k)] otherwise,

(8)

Stmp(m, k)=

⎧⎨
⎩
S(0, k) if m = 0,
min [Stmp(m−1, k), S(m, k)] if m%L �= 0,
S(m, k) otherwise,

(9)

where % sign is used to indicate modulus after division [4].

The parameter L determines the resolution of the local minima

search. The local minimum is based on a window of at least L
frames, but not more than 2L frames. The length of the window con-

trols the bias upwards during continuous speech and the bias down-

wards when the noise level increases [1].

3. BAYESIAN ON-LINE CHANGE POINT DETECTION

The Bayesian On-line CPD (BOCPD) algorithm has mainly focused

on the time since the last change point, called the run length r [5],

[6]. It used an underlying predictive model (UPM) of the time-series

that changes at each change point. It also used a hazard function

H(r|θh) which describes how likely a change point is given the

run length r. The UPM is used to compute the posterior predictive

p(xt|x(t−τ), θm) for any τ ∈ [1, ..., (t− 1)], at time t. The param-

eters θ = {θm, θh} form the set of hyper-parameters for the UPM

model, and are assumed to be fixed and known.

The posterior run length p(rt|x1:t)) at time t is estimated se-

quentially to predict the on-line changes by marginalizing the run

length variable as follows:

p(xt+1|x1:t)=
∑
rt

p(xt+1|x1:t, rt)p(rt|x1:t)

=
∑
rt

p(xt+1|x
(r)
t )p(rt|x1:t), (10)

where x
(r)
t refers to the last rt observations of x, and p(xt+1|x

(r)
t )

is computed using the UPM. The run length posterior can be found

by normalizing the joint likelihood:

p(rt|x1:t) =
p(rt, x1:t)

Σrtp(rt, x1:t)
. (11)

The joint likelihood can be updated on-line using a recursive

message passing scheme

γt:=p(rt, x1:t)

=
∑
rt−1

p(rt, rt−1, x1:t))

=
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
hazard

p(xt|rt−1, x
(r)
t )︸ ︷︷ ︸

UPM

p(rt−1, x1:t−1︸ ︷︷ ︸
γt−1

). (12)

This defines a forward message passing scheme to recursively

calculate γt from γt−1. The conditional can be restated in terms

of messages as p(rt|x1:t) ∝ γt. All the distributions mentioned so

far are implicitly conditioned on the set of hyper-parameters θ =
{θm, θh}. The detailed mathematical description of this BOCPD

technique for on-line change point detection can be found in [5] and

[6].

4. BOCPD TO DETECT ABRUPT NOISE FLOOR CHANGE

In real-world acoustic environments, both the background additive

noise and the channel distortions are highly non-stationary in nature

and are not known a priori. The statistical properties of the noise

power spectrum density (PSD) change very rapidly with time. Under

these circumstances, the actual model of the speech signal is highly

non-linear and non-Gaussian as follows [7]:

y = x+ q+ IDFT{ln(1 + eDFT [d−q−x])}, (13)

where y is the observed noisy speech signal in the cepstral domain,

x is the uncorrupted speech in the cepstral domain, q is the channel

bias in the cepstral domain, and d is the additive noise in the cepstral

domain.

The changes in real-world acoustic conditions can easily be

monitored by tracking the statistical properties of the noise PSD for

each frame of the observed speech signal using the UPM model of

the BOCPD technique [6]. The BOCPD technique uses this UPM

model to detect a change point by predicting the changes in second

order statistical properties of the time-series in on-line conditions.

In this paper, we apply the UPM model to detect rapid changes in

the noise floor by tracking and monitoring the second order statistic

of the noise PSD for each noisy speech frame. The UPM is mod-

eled with an independent and identically distributed (iid) Gaussian

observation with changing mean and variance of the kth DFT bin.

A distribution called the Normal-Inverse-Gamma on the mean and

variance, which is computationally advantageous, is used as follows:

|Y (m, k)|∼N (μ, σ2), (14)

μ∼N (μ0, σ
2/κ), σ−2 ∼ Gamma(α, β). (15)

In this proposed noise PSD tracking model, the product partition

model in [6] is replaced by the speech frames assuming the arrival

4338



of each frame is independent of other frames. A Hamming window

is used for windowing the speech signal and the temporal correla-

tion effects between overlapped adjacent speech frames is neglected

in order to make the UPM model simple. A constant hazard func-

tion H(r|θh) := θhconstant
similar to [5] is used in the BOSCPD

model. A constant hazard function means p(rt = 0|rt−1, θh) is in-

dependent of rt−1 and gives rise to geometric inter-arrival times for

change points. Under these conditions, the model hyper-parameters

for the proposed Bayesian on-line spectral change point detection

(BOSCPD) algorithm are:

θ = {μ0, κ, α, β, θhconstant
}. (16)

The detailed description of these model hyper-parameters for the

BOCPD-based model can be found in [5] and [6]. The authors of this

paper published part of this proposed algorithm in [8].

The result of BOSCPD algorithm for each noisy speech frame

is a decision whether there is an abrupt change in the noise PSD

or not. If there is a change point detected in a noisy speech frame,

the algorithm raises a flag and the noise tracking algorithm uses this

decision to update its noise estimation process as follows:

f(Cm,k) =

{
1 if change point is detected,

0 otherwise,
(17)

where f(Cm,k) is a function of change point C detected by the

BOSCPD algorithm for the kth frequency bin of the mth frame of

the noisy speech signal. Finally, the noise estimation in Eqs. 8 and 9

can be updated in response to abrupt environmental change detection

as shown in Algorithm 1.

Algorithm 1 Updating noise estimation based on the proposed

BOSCPD algorithm

if mod(m/L) == 0 || f(Cm,k) == 1 then

Smin(m, k)← min {Stmp(m− 1, k), S(m, k)}
Stmp(m, k)← S(m, k)

else

Smin(m, k)← min {Smin(m− 1, k), S(m, k)}
Stmp(m, k)← min {Stmp(m− 1, k), S(m, k)}

end if

Figure 1 shows an example noise spectrum estimated with our

algorithm and with MCRA [1], MCRA2 [2], and EMCRA [4] for

a scenario in which the spoken utterance is degraded with highly

non-stationary babble noise. Our algorithm is able to track non-

stationarity in environments and adapt to the new environment with-

out delay while MCRA-based algorithms required large delay to

adapt.

Figure 2 compares the performance of the proposed BOSCPD

algorithm with MCRA for denoising the noisy speech signal de-

graded by babble noise. The time window size L is set to 64 frames

for both the proposed algorithm and the MCRA algorithm. The pro-

posed algorithm performed better than the original MCRA, which

can be easily observed from Figure 2(d-e).

Figure 3 shows an example noise spectrum estimated with our

algorithm and with the MCRA [1], MCRA2 [2] and EMCRA [4]

algorithms for a scenario in which the noise environment changes

suddenly with an increased noise floor. Our algorithm is able to

adapt to the new environment within 0.08 sec, while the MCRA and

EMCRA algorithms required 1.1 secs, and the MCRA2 algorithm

required 1.3 secs to adapt.
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Fig. 1. Comparison between the noise spectrum (for f=1.5 kHz)

estimated using the proposed algorithm and MCRA [1], MCRA2 [2]

and EMCRA [4] algorithms for a sentence corrupted by babble noise

at 5 dB SNR.

Fig. 2. Comparison of speech enhancement performances using the

proposed algorithm and MCRA algorithms for the test utterance cor-

rupted by babble noise.
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Fig. 3. Comparison between the noise spectrum (for f=1.5 kHz)

estimated using the proposed algorithm and the MCRA [1], MCRA2

[2] and EMCRA [4] algorithms for a sentence corrupted by babble

noise (t < 4.4 sec) followed by a sentence corrupted by subway

noise (t > 4.4 sec).

5. FRONT-END PROCESSING OF ON-LINE ASR

In real-world environments, both the background noise and the chan-

nel distortion vary abruptly with a change of temporal-spatial condi-

tions. A frame dynamic joint additive and channel distortions com-

pensation (JAC) [7] method would be suitable to address this prob-

lem. In the JAC technique, first the noise tracking algorithm com-

pensates the background noise in the linear spectral domain and then

the channel bias needs to be compensated in the cepstral domain for

each speech frame. A first order recursive filter with a time smooth-

ing constant could be used to estimate the channel bias as follows:

x̄t=ŷt − b̄t−1, (18)

b̄t=αb̄t−1 + (1− α)ŷt, (19)

where ŷt is the additive noise compensated observed cepstral feature

for the current frame, x̄t is the bias compensated cepstral feature, b̄t
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is the bias estimate in the cepstral domain from the previous frame

and the current observation using a first order recursive filter, and

α{α = 0.995} is a time smoothing constant. The on-line ASR uses

a simultaneous bias compensation and recognition scheme and such

an approach is very much suitable for real-world applications, where

the end of each speech utterance is not known a priori.

6. EXPERIMENTAL RESULTS

The proposed noise tracker has been tested in comparison with the

popular MCRA [1], MCRA2 [2] and EMCRA [4] for noisy speech

enhancement. In all the tests, a standard spectral subtraction-type

speech enhancement method has been used to perform the noise re-

moval. Speech signals sampled at 8 kHz are segmented into 25-

ms frames using a Hamming window with 60% overlap. We use

several standard objective quality measures such as i) global SNR

(GSNR), ii) segmental SNR (segSNR), iii) Itakura-Saito distortion

(It-Sa), iv) weighted spectral slope (WSS), and v) perceptual evalu-

ation of speech quality (PESQ). For one particular noisy speech file,

results are summarized in Table 1.

The proposed BOSCPD algorithm has also been tested in com-

parison with MCRA for front-end speech processing of an on-line

ASR. The on-line ASR is simulated using the ATK toolkit [9] for

restaurant noise, street noise, airport noise and train station noise

environments using the Aurora 2 speech database. We use a clean-

training model for this simulation. The on-line ASR uses 39 MFCCs

(13 static MFCC coefficients C0, C1, C2, C3,...,C12, 13 ΔC coeffi-

cients, and 13 ΔΔC coefficients) for training HMMs and testing the

utterances. It also uses whole word HMM models with 18 states per

word including 2 dummy states at the beginning and the end. These

HMM models are left-to-right models without skip-over states. They

use mixtures of 6 Gaussians per state.

The proposed BOSCPD algorithm performs better than the

MCRA technique for on-line ASR. The average increase in the word

accuracy for test set ‘b’ is 23.69% for MCRA and 26.43% for the

proposed method compared to the results of the Aurora 2 DSR [10].

Graphically these performance results are shown in Figure 4.

Table 1. Speech Enhancement Comparison of Different Noise

Power Spectrum Estimation Techniques.

GSNR SegSNR It-Sa WSS PESQ

Noisy Speech 5.264 -1.545 3.848 93.927 1.987

MCRA 9.304 0.623 3.061 85.681 2.357

MCRA2 8.672 0.166 2.612 88.046 2.316

EMCRA 9.352 0.524 3.507 86.488 2.373

BOSCPD 9.397 0.631 3.050 85.382 2.420

7. CONCLUSIONS

In this paper, we present a novel noise estimation algorithm algo-

rithm to track and compensate rapidly varying acoustic noises for

speech enhancement and on-line ASR in adverse conditions. The

proposed noise tracking algorithm is based on the Bayesian on-line

inference for change point detection (BOCPD) technique and the

MCRA algorithm. The objective of this algorithm is to reduce the

time delay for adapting to abrupt changes in background acoustic

noises. Compared to the most popular MCRA-based algorithms,

the BOSCPD tracking and noise estimate technique responds more

quickly to noise variations. Experimental tests for both the speech

enhancement and front-end processing of on-line ASR have demon-

strated positive results.

(a) Restaurant Noise (b) Street Noise

(c) Airport Noise (d) Train Station Noise

Fig. 4. Performances of the proposed method and MCRA for on-line

ASR compared to the results of Aurora 2 DSR(Batch mode) [10].
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