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ABSTRACT

In this paper, we address the problem of robustness to both noise
and speaker-variability in automatic speech recognition (ASR). We
propose the use of pre-computed Noise and Speaker transforms, and
an optimal combination of these two transforms are chosen during
test using maximum-likelihood (ML) criterion. These pre-computed
transforms are obtained during training by using data obtained from
different noise conditions that are usually encountered for that par-
ticular ASR task. The environment transforms are obtained during
training using constrained-MLLR (CMLLR) framework, while for
speaker-transforms we use the analytically determined linear-VTLN
matrices. Even though the exact noise environment may not be en-
countered during test, the ML-based choice of the closest Environ-
ment transform provides “sufficient” cleaning and this is corrobo-
rated by experimental results with performance comparable to his-
togram equalization or Vector Taylor Series approaches on Aurora-2
task. The proposed method is simple since it involves only the choice
of pre-computed environment and speaker transforms and therefore,
can be applied with very little test data unlike many other speaker
and noise-compensation methods.

Index Terms— speaker adaptation, environment adaptation, ro-
bustness

1. INTRODUCTION

Speaker-variability and Noise are two major sources of performance
degradation in ASR. In many practical ASR applications, both of
these sources of degradation are present, and hence there is a lot of
interest in reducing both. However, historically, most of the research
work have often focused on reducing only one of these sources
without taking into account the other problem. For example, most
work on reducing inter-speaker variability often focus only on this
problem, without taking into account the problem of noise. Two
broad approaches to speaker-normalization are speaker-adaptation
based approaches such as Maximum Likelihood Linear Regres-
sion (MLLR) or Constrained-MLLR (CMLLR) [1] and Vocal-tract
Length Normalization (VTLN) [2]. Usually, these approaches are
“two-pass” in nature, where the first-pass recognition output is used
to estimate the transform parameters or VTLN-warping factor, be-
fore the final recognition is done. Since MLLR/CMLLR require
estimation of the parameters of the transformation matrix, they re-
quire larger amount of adaptation data (about 30 sec.) for robust
estimation of the parameters when compared to VTLN which re-
quires only the warp-factor estimation. The parameter estimates
are sensitive to first-pass transcription errors (more so in speaker-
adaptation cases than VTLN), and hence the presence of noise could

affect the efficacy of these speaker-normalization methods.

Similarly, noise-compensation algorithms have been proposed,
which often do not account for inter-speaker variability. Two com-
monly used noise-compensation approaches are those based on his-
togram equalization (HEQ) [3] and those based on Vector Taylor Se-
ries (VTS) [4]. In the histogram based approaches, adequate speech
data is required to get robust estimates of the quantiles, while in the
VTS based approach the noise models are obtained from the first few
and last few frames of the utterance.

Recently, there has been lot of interest in reducing both the noise
and speaker-variability. Various combinations of speaker and noise
adaption techniques have been studied and are shown to mitigate
the effects of noise and at the same time compensate for speaker
variability. Combination of VTLN with HEQ is studied in [5][6].
Combination of VTS with VTLN [7] and VTS with MLLR are stud-
ied in [8]. Gales [9] proposed the acoustic-factorization approach
to separate the noise and speaker effects and uses cluster-adaptive
(CAT) approach for environment transform estimation and MLLR
for speaker-transform estimation. In [10] cascade of CMLLR trans-
forms are used which enables the use of transform estimated in one
environment to be used with same speaker in another environment.
However, the paper assumes the knowledge of speaker and noise
environment. Increasingly speech recognition systems are used in
mobile devices where environment changes quite often and the SNR
levels of the speech signal also changes significantly. In such a case,
a single transform to compensate the noise variability for that envi-
ronment may not be appropriate. Further, in [9][10], the noise and
environments transforms have to be estimated using test utterances
as adaptation data.

In this paper, we propose the estimation of noise transforms dur-
ing the training step. These noise transforms are essentially CMLLR
transforms that are applied on the features and represent a “cleaning”
of the features. The basic premise is that the different noise con-
ditions that are encountered in a particular ASR task are captured
by these noise-transforms and stored. Therefore, these matrices are
“pre-computed” and one of these are chosen during the test step us-
ing a maximum-likelihood criterion. Even if a noise condition that
is not “seen” during training appears, it is hoped that a transform
that closely matches the condition will be chosen from among the
pre-computed transforms enabling the cleaning of the features and
providing improvement in the recognition accuracy. Similarly, to re-
duce inter-speaker variability, we use a set of pre-computed Linear-
VTLN matrices corresponding to the range of warp-factors used in
the ML search. In our case, we use �� warp-factors, and hence the
�� Linear-VTLN warp-matrices are computed using our analytically
determined Linear-VTLN approach [11]. The advantage of the use
of such pre-computed noise and speaker transforms is that during
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Fig. 1. Estimation of Environment and Speaker Transform
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test, we need to choose only one of these matrices, and hence very
little “adaptation” data is required to make the robust choice. While
in this paper we discuss using these transforms for adaptation of test
data, this can be easily extended to adaptive training.

The rest of the paper is organized as follows. In Section 2, we
discuss the approach to compensate the noise and speaker variability.
Experiments to evaluate the performance of the proposed approach
is discussed in Sections 3.1 and 3.2. Finally, we conclude the paper
in Section 4.

2. PROPOSED APPROACH USING ENVIRONMENT AND
SPEAKER TRANSFORM

2.1. Estimation of Environment and Speaker Transform

Fig. (1) shows the block diagram of the proposed environment trans-
form estimation process. Using clean Speaker Independent (SI)
HMM model as the baseline, speaker specific transforms are first
estimated from relatively clean speech utterance from among all the
utterances in the same environment. By choosing clean utterances,
the transform estimated would be a good representation of speaker
characteristics. These speaker specific transforms are then used to
normalize the features so as to remove the speaker related variability
as show in Eq. (1)

��
����� � ��

�	
�
�
����� (1)

Where � is the VTLN warp factor and��
�	
 is linear-VTLN speaker

transform matrix.

Once the speaker variability is removed from the features we
can use all the train utterances collected in a specific noise environ-
ment (e.g. car noise, restaurant etc.) at different noise levels (e.g
very noisy, noisy, less noisy, clean) and estimate environment noise
specific CMLLR transforms. The corresponding auxiliary function
is shown in Eq. (2):

������� ������ �
�

��

 	
� �
������

�
������������� (2)

where the summation is over all utterances, frames and Gaussian
components associated with that noise environment and ������ is
clean SI HMM model. These transforms will capture only the noise
variability as they are estimated from speaker normalized features.

Fig. 2. Adaptation during test using pre-computed transform
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2.2. Adaptation During Test Using Pre-Computed Transforms

Fig. (2) shows the block diagram of the proposed transform selec-
tion and recognition process. Selection of the Environment trans-
form is done in ML framework as shown in Eq. (3). Where ��

���

is the �th pre-computed environment specific CMLLR transforms
obtained during training. Selection of transforms can be done more
efficiently by using sufficient statistics as in [12]. However in our
implementation we have computed individual likelihood for each
transform.

	���� � �
����
��������

���
�������

���
�
�
�������������� (3)

These environment normalized features using 	���� are then
used to estimate the speaker specific transform. We first do the envi-
ronment normalization as VTLN warp factor estimation is sensitive
to noise [5][6]. The noise cleaned features are then used to esti-
mate the speaker transform. Eq. (4) shows the selection of VTLN
transform obtained after the application of environment transform,
i.e.

	��� � �
����
�

�
���
�	


	�������������� ���� (4)

where �� is the first-pass transcription.

The Speaker normalized features are then used to re-choose the
environment transforms as shown in Eq. (5):

		���� � �
����
��������

���
�������

���
�
�
�����

	��
�	
���������� (5)

where 	��
�	
 represents optimal speaker transform obtained from

Eq. (4). Environment and speaker normalized features obtained from
Eq. (6) are used for recognition.

	��
���� �

		����
	��
�	
�

�
���� (6)
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Fig. 3. Comparison of recognition accuracy for set A between (i).
single transform per environment (ii). True SNR specific transform
and (iii). SNR transforms selected in ML framework
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3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

In our experiment, Aurora 2 database is used which consists of
speech utterances with eight types of environments. Training set has
speech utterance for four different environments at SNRs between
20dB and 5dB. Evaluation is performed using two test sets each of
which has SNRs between 20 dB and -5 dB. Set A contains noise
types seen in the training data while Set B has noise types unseen in
the training data.

Acoustic models were trained from clean training data using
HTK. An HMM with 18 states per digit and 3 mixtures per state
is created for each digit as a word model. There is a three state
silence model with 6 Gaussian per state and one state short pause
model tied to the middle state of the silence. Standard 39 dimension
MFCC features consisting of 13 static, delta and delta-delta features
were computed from power spectral observation and �
 was used
instead of log energy. The baseline clean HMM system with cep-
stral mean normalization (CMN) had a word accuracy of ���
�� on
Set A and ������ accuracy on Set B. Average accuracy is calculated
without accounting the accuracy of clean and SNR ��.

3.2. Experiments and Results

The following experiments were performed to check the advantage
of choosing the environment transform and to study the combination
of noise and speaker transform. In the case of Aurora-2, we have
different environments (e.g car noise, street noise, babble) as well
as different noise levels i.e SNR levels. In the first set of the experi-
ment, SNR specific environment CMLLR transforms were estimated
for all the four training environments. Training set has utterances for
four different environment and each environment has utterance col-
lected in 5 different SNRs between �
�� and ���. Using the data
total of 20 SNR specific environment CMLLR transforms were es-
timated. Evaluation is done on set A and set B. Note that set B has
noise conditions not seen during training. One transform among the
20 SNR specific transform is chosen as best environment and the
recognition is done by transforming the feature using the best envi-
ronment as in Eq. (3). To find the upper bound of the results, same
experiment is repeated now with true SNR specific transforms ap-
plied on the test features. We also considered third case where one
single transform is estimated per environment using all the SNR lev-
els for that environment. Fig. (3) compares the result of transform

Fig. 4. Shows the preference of transforms selected in ML frame-
work for N1 environment in test set A for 1001 utterances per SNR.
Where N2, N3, N4 specify the other environment in Set A for which
environment transforms are estimated
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selection approach on Set A with the ideal (true) case and with the
single transform case. Test set has two additional SNR levels 
��
and ����. Since transform for these SNR’s are not learned dur-
ing training, we show average results over clean to SNR �. From
Fig. (3) we see that, compared to using single transform for one en-
vironment (e.g car noise etc) at all SNR levels (e.g clean, noisy, very
noisy) using SNR specific transform provides significant improve-
ment. Further, our proposed method of choosing transform without
any knowledge of noise has comparable performance to using true
SNR and environment specific transform.

Fig. (4) shows the true SNR (i.e ground truth) of the utterance
and SNR transform actually selected in ML framework as in Eq. (3).
From the figure it is clear that best transform were chosen from same
or nearby SNR transforms. For example, when the SNR is �
�� se-
lected transforms are from SNR �
��, SNR ����. Similarly when
the true SNR is ����, since the available SNR transforms are only
from clean to SNR �, it chooses the ”closest” level namely SNR
���. The results support our argument that ML approach chooses
the appropriate transform which matches closely to the noise level.

Previous experiments did not account for the speaker variabil-
ity. We now consider the selection of both environment and speaker
transform. During testing, first select the best SNR specific environ-
ment transform and and then use it to clean the feature. Once the
features are noise normalized, VTLN warp factor is estimated for
the speaker w.r.t clean HMM model. The best Speaker transforms

( 	��
�	
) are later used to remove the speaker related variability from

the feature and Environment transform is re-chosen on the speaker
normalized features. Recognition is done on speaker normalized and
environment normalized features as shown in Eq. ( 6).

3.3. Discussion of Recognition Results Using Environment and
Speaker Transforms

Table. (1)(a) shows the recognition results of baseline clean HMM
system for Set B. Note that noise environment for Set B is not seen
during training and represents unseen environment. Results for the
proposed approach with VTLN as speaker transform is shown in
Table. (1)(b). Combination of environment transform with VTLN
shows an impressive relative improvement of ����� over baseline.
This result is comparable to the result achieved with combination of
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Table 1. Recognition results on Set B for the proposed method with VTLN and CMLLR as speaker transforms
(a) (b) (c)

Baseline CMN System Proposed : ��
���� �

		����
	��
�	
�

�
���� Upper Bound : ������ �

		����
	��	
�

�
����

Env 1 Env 2 Env 3 Env 4 Avg Env 1 Env 2 Env 3 Env 4 Avg Env 1 Env 2 Env 3 Env 4 Avg

Clean 99.23 99.24 99.08 99.44 99.25 99.17 99.06 98.96 99.29 99.12 99.26 99.30 99.14 99.44 99.29

20 dB 97.94 97.19 97.91 98.18 97.81 98.65 97.58 98.81 98.77 98.45 99.05 98.43 99.22 99.54 99.06

15 dB 95.03 93.14 95.29 94.85 94.58 97.36 96.40 97.49 97.28 97.13 98.59 98.00 98.72 98.89 98.55

10 dB 85.60 80.47 87.80 82.84 84.18 93.89 90.75 95.08 94.01 93.43 96.50 94.47 97.08 96.51 96.14

5 dB 62.08 51.51 62.24 52.79 57.16 82.19 74.82 84.58 80.78 82.09 88.92 85.10 90.28 87.41 87.93

0 dB 30.61 23.49 31.91 24.28 27.57 55.76 44.74 59.47 50.85 52.71 67.39 59.55 68.80 61.15 64.22

-5 dB 13.97 11.46 15.48 11.48 13.10 24.16 17.35 26.96 20.21 22.17 34.33 26.81 35.31 30.15 31.65

Avg 74.25 69.16 75.03 70.59 72.26 86.77 80.86 87.09 84.33 84.76 99.09 87.11 90.82 88.7 89.18

nonlinear compensation techniques like HEQ and VTS with VTLN
[5][7]. Table. (1)(c) also shows the results for the best case (which is
upper bound) where in CMLLR transform is used instead of VTLN
as speaker transform. In this case, using noise cleaned data, CMLLR
transform is estimated for each speaker, for every environment and
every noise level. Therefore we do a separate noise adaptation at
every noise level for every noise environment of each speaker. This
represents upper bound and is shown in Table. (1)(c). Note that in
environment selection in Table. (1)(b) there are no transforms avail-
able at SNR 
 and SNR �� due to lack of training data. However
for CMLLR as speaker transform, some amount of adaptation data
is used for these SNR’s and hence it shows significant improvement.
At all other level, our proposed method is quite close to upper bound
and significantly better than the baseline.

4. CONCLUSION

In this paper, we have shown that by selecting appropriate Envi-
ronment and Speaker Transforms from a pre-computed set, we can
achieve performance comparable to existing method such as His-
togram Equalization. More importantly the method works equally
well on test data with noise environment NOT seen during train-
ing. The pre-computed environment transforms were obtained from
training data using CMLLR framework while the speaker transform
are a set of Linear-VTLN matrices corresponding to the range of
warp factors. Since these transforms need to be only “selected”, they
can be applied even when very little test data is available making
it attractive when compared to other noise and speaker-adaptation
methods.
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