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ABSTRACT 

Use of a linear projection (LP) function to transform multiple sets 
of acoustic models into a single set of acoustic models is proposed 
for characterizing testing environments for robust automatic speech 
recognition. The LP function is an extension of the linear 
regression (LR) function used in maximum likelihood linear 
regression (MLLR) and maximum a posteriori linear regression 
(MAPLR) by incorporating local information in the ensemble 
acoustic space to enhance the environment modeling capacity. To 
estimate the nuisance parameters of the LP function, we developed 
maximum likelihood LP (MLLP) and maximum a posteriori LP 
(MAPLP) and derived a set of integrated prior (IP) densities for 
MAPLP. The IP densities integrate multiple knowledge sources 
from the training set, previously seen speech data, current utterance, 
and a prepared tree structure. We evaluated the proposed MLLP 
and MAPLP on the Aurora-2 database in an unsupervised model 
adaptation manner. Experimental results show that the LP function 
outperforms the LR function with both ML- and MAP-based 
estimates over different test conditions. Moreover, because the 
MAP-based estimate can handle over-fittings well, MAPLP has 
clear improvements over MLLP. Compared to the baseline result, 
MAPLP provides a significant 10.99% word error rate reduction. 

Index Terms—Acoustic Model Adaptation, Robust Speech 
Recognition, Environment Modeling, Linear Projection 
 

1. INTRODUCTION 
An automatic speech recognition (ASR) system uses a set of 
acoustic models, which is estimated on a set of training data, to 
recognize testing utterances to word or sub-word sequences. If the 
training and testing conditions do not match, the ASR performance 
may be degraded. An effective way to handle the mismatch is to 
estimate a new set of acoustic models that characterizes the testing 
environment well. Then, the estimated acoustic models are used for 
performing recognition. Many environment modeling approaches 
have been proposed. Generally, these approaches prepare acoustic 
model sets, , using training data. A mapping function, , is then 
calculated to transform  to a new set of acoustic models, , by 
                                      F  
where  is the acoustic model set for the testing condition.  may 
include a single set ( ) or multiple sets ( ) 
of acoustic models, where  and  (p=1,2…P) are acoustic 
models estimated based on the training data.  is the nuisance 
parameters of the mapping function, F  [1]. These approaches can 
be summarized into two categories based on the type of . 

The first category of approaches sets , where  is 
generally calculated on the entire set of training data. For these 
approaches, the mapping function, , parameterizes the mismatch 
between training and testing conditions and transforms  to . 
Successful approaches include the stochastic matching algorithm 
[1], maximum likelihood linear regression (MLLR) [2], maximum 
a posteriori linear regression (MAPLR) [3], and joint compensation 
of additive and convolutive distortions (JAC) [4]. 

The second category of approaches sets  , 
where each  (p=1,2…P) models a particular acoustic condition 
in the overall training set. Compared to the previous category, this 
one usually uses a simpler mapping function, such as best first 
(BF), linear combination (LC), or a linear combination with a 
correction bias (LCB) [5–8]. The collection of  is 
usually pre-processed to enhance the efficiency and accuracy of the 
mapping procedure, such as through principal component analysis 
(PCA) and parameter structuring. Notable examples include cluster 
adaptive training (CAT) [7], eigenvoice [8], and ensemble speaker 
and speaking environment modeling (ESSEM) [5, 6]. 

In this paper, we propose a new mapping function, linear 
projection (LP), to transform  to . The proposed 
LP function can be seen as an extension of the linear regression 
(LR) function of MLLR and MAPLR with incorporation of 
multiple sets of acoustic models. Local information in the entire 
training space is taken into account, so the proposed LP function 
provides better environment modeling capability than the LR 
function. To estimate the nuisance parameters in LP, we derived 
the maximum likelihood-based LP (MLLP) and maximum a 
posteriori-based LP (MAPLP). In addition, we developed 
integrated prior (IP) densities for MAPLP. Experimental results on 
the Aurora-2 task [9] indicate that with both ML- and MAP-based 
estimates, the LP function can achieve better performance than 
other mapping functions, including LR, BF, LC, and LCB.  
 

2. USING THE LINEAR PROJECTION FUNCTION  
FOR ENVIRONMENT MODELING  

This section first reviews the ML- and MAP-based environment 
modeling criteria; then, we introduce MLLP and MAPLP and 
show the prior density estimation for MAPLP. 
2.1. ML- and MAP-based Environment Modeling Criteria 
Calculation of the nuisance parameters, , in F , in Eq. (1), 
requires speech, , from the testing condition and transcription, , 
corresponding to . We can use an ML-based objective function: 

 
to estimate the nuisance parameters, , in F  by 
                        

When using an MAP-based objective function, we have 
       
and we can calculate the parameters, , in F  by 
                         

With the estimated F , we can estimate a new set of acoustic 
models that matches the testing condition. For the m-th Gaussian, 
we estimate its mean vector, , in the final acoustic models by 
                                          F  
where  is an extended vector.  can be a single mean vector, 

, where  is from , or a pool of mean vectors, 
, where  is the m-th mean vector in . We 

designed the prior density for the m-th mean vector by 
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F F  

where  and  are hyper-parameters of the prior density, and  
is the number of feature dimension.  
 

2.2. MLLP and MAPLP 
For both MLLP and MAPLP, we set , and  
in Eq. (6) becomes 

 F   
where  is a correction bias. Based on the MAP criterion in Eq. (5), 
we calculate the parameters in  and  by 
                              ′  
with                         

′ ′  

 

where  is the t-th observation;  is the occupation probability; 
;  is the s-th Gaussian of the p-th set of 

acoustic models; is the i-th element of the covariance matrix;  
is the entire set of Gaussians;  indicates that the s-th 
Gaussian is in the transcription reference, ;  is a control factor 
determining the weight of prior information. In Eqs. (9)-(11), we 
present the MAPLP derivation. The MLLP derivation can be 
obtained by setting  in Eqs. (9)-(11). To reduce the 
complexity, we can use a simpler form for each . 
When using diagonal matrix , i.e,  , 
the parameters of  is estimated by 
                       ′  
with                         

′ ′  

 

where .  
2.3. Prior Density Estimation for MAPLP 
We derived four ways to calculate hyper-parameters in the prior 
densities in Eq. (7), namely clustered priors (CP), sequential priors 
(SP), hierarchical priors (HP), and integrated priors (IP). 
2.3.1 Clustered Priors (CP) 
For the m-th mean vector, we first calculate K sets of mean vectors 
{ } using K subsets of the entire 
training set. We can segment the entire training set into K subsets 
based on speakers’ genders or accents, the signal to noise ratio 
(SNR), or in a data-driven manner. Then, we estimate the hyper-
parameters of the CP density, { ,  }, by 

F  

F  

where  and  are the i-th components of  and . 
2.3.2 Sequential Priors (SP) 
By using the SP densities, we incorporate the information seen 
before for estimating the current mapping function [10]. In this 

study, we sequentially update and use a fixed  to simplify 
online computation. For the first utterance, we set  
in Eqs. (9)-(11), or Eqs. (12)-(14) for the diagonal form of , to 
calculate F ; the estimated F  is used as the hyper-
parameters for the next utterance. Then, for the u-th utterance, we 
prepare the hyper-parameters  by 
                                   
where  is estimated from the (u-1)-th utterance. 
2.3.3 Hierarchical Priors (HP) 
We prepare a tree structure for calculating HP. The estimate of HP 
densities resembles that is performed in structural MAPLR 
(SMAPLR) [11]. When computing the HP densities, we first 
estimate a mapping function at the top node of the tree structure. 
The estimated mean parameters are propagated to the child nodes 
and used as the HP density in the next layer. The estimation and 
propagation processes iterate and finally stop at the desired layer of 
the tree structure. For the m-th mean vector in the q-th node at the 
n-th level, its hyper-parameter, , is calculated by 

                                   
where  is from the parent node of the q-th node. 
2.3.4 Integrated Priors (IP) 
We derive the IP density that combines the above three prior 
densities using a function, Γ : 

Γ  
Here, we use a linear combination function for Γ  to estimate : 

 
where , , and  are weighting coefficients. We optimize 
the coefficients using a set of development data. Note that CP, SP, 
and HP are estimated using the information from the training set, 
seen information, and the current testing utterance with a tree 
structure, respectively. Therefore, the IP densities incorporate 
multiple knowledge sources. In this study, we only online estimate 

 and use a fixed  for the IP densities. 
 

3. CORRELATIONS OF LP WITH OTHER WELL-KNOWN 
MAPPING FUNCTIONS 

This section discusses the correlations of LP with several other 
well-known mapping functions. These functions can be classified 
into: (1) single model input; (2) multiple models input. In the 
following discussion, we present the MAP-based derivations. The 
ML-based counterparts can be obtained by setting . 
3.1 Single Model Input 
This category of approaches sets }. Here, we discuss linear 
regression (LR) and compensation bias (BC).  
3.1.1 Linear Regression (LR) 
When using LR, we set , and  in Eq. (6) becomes 

 F   
The parameters in  and  in Eq. (21) can be calculated by 

′  
with                        

′ ′  

 

where .  
When we use a diagonal matrix , , in 
Eq. (21), we can solve  and  by 
                        ′  
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with                         

′ ′  

 

where . 
3.1.2 Bias Compensation (BC) 
When using BC, we set , and  in Eq. (6) becomes 
                       F   
The compensation bias, , can be solved by 

                                      
with                         

 

 

where . 
3.2 Multiple Models Input 
For this category of approaches, we use . Here, 
we discuss the correlations of LP with linear combination with a 
correction bias (LCB), linear combination (LC), and best first (BF) 
mapping functions. Compared to LP, these mapping functions use 
simpler forms of matrices, , in Eq. (8). 
3.2.1 Linear Combination with a Correction Bias (LCB) 
For LCB, we set , and  in Eq. (6) becomes 
                   =F  
where  is the m-th mean in . 

. We estimate the nuisance parameters in Eq. (32) by 
                

with 

 

 

where .  is a D D identity matrix. 
3.2.2 Linear Combination (LC) 
For LC, we set , and  in Eq. (6) becomes 
                     F  
where . We estimate the 
nuisance parameters in Eq. (36) by 

                       
with 

 

 

where . 
 

3.2.3 Best First (BF) 
The BF function can be considered as a hard-decision version of 
LC. For BF, we set , and  becomes 
                     F  

where the -th matrix, , is an identity matrix,  ( ); all the 
other matrices are zero matrices,  , ( , ). We search 
for the  sets of acoustic models to find  by 

 

                                                                 
 

4. EXPERIMENTS 
This section presents the experimental setup and discusses the 
experimental results. The proposed ML- and MAP-based LP and 
other mapping functions were evaluated on the Aurora-2 database. 
For the MAP estimates, we adopted the IP densities in this study. 
4.1. Experimental Setup  
We used the multi-condition training set to prepare acoustic 
models. This training set includes 8440 utterances from four types 
of noise, at 5- to 20-dB SNRs, and a clean condition. We clustered 
the training set by speakers’ genders and accordingly obtained 
female and male training subsets, with each subset containing 4220 
utterances. With the entire training set and two gender dependent 
(GD) subsets, we prepared a gender independent (GI) and two GD 
acoustic models. We followed the complex back-end hidden 
Markov model (HMM) topology presented in [12] to train the three 
sets of acoustic models. Each digit was modeled with 20 mixtures 
per state, and the silence and short pauses were modeled with 36 
mixtures per state. We used a modified European Telecommuni-
cations Standards Institute (ETSI) advanced front-end (AFE) for 
feature extraction [12]. Every feature vector comprised 13 static 
plus their first- and second-order time derivatives. 

We obtained results for 50 testing conditions (10 noise types, 
0- to 20-dB SNR) from the Aurora-2 test set; each condition had 
1,001 utterances. The 50 conditions were divided into SetA, SetB, 
and SetC. SetA included the same four types of noise as those in 
the multi-condition training set, SetB contained four unseen types 
of noise, and SetC had an additional channel distortion. Word error 
rate (WER) was used to evaluate the ASR performance. All the 
results reported in this paper, except for the baseline, were tested in 
a per-utterance unsupervised model compensation mode. 

To enhance the accuracy of the environment modeling, we 
built a tree structure to cluster mean parameters in the acoustic  
models. The tree was constructed based on the GI acoustic models 
and consisted of one root, three intermediate, and six leaf nodes. 
For both ML and MAP estimates, we used the tree to determine the 
number of mapping functions. For the q-th node in the tree, we 
estimate its accumulated statistics, , . 
If  is larger than a predefined threshold, we use the mapping 
function for the q-th node. If not, we check the accumulated 
statistics at the parent node. The process repeats until we find a 
node with sufficient statistics. For a fair comparison, a same set of 
transcription reference, generated by the GI acoustic models, was 
used to calculate nuisance parameters. Therefore, for each 
utterance, the number of mapping functions used for model 
compensation was the same across different types of mapping 
functions. The differences in performance simply represent the 
environment modeling capabilities among them.  

Table I lists the amount of nuisance parameters in the mapping 
functions that we tested in the experiments. D is the number of 
feature dimension, and P is the number of acoustic models. In our 
experiments, we used a diagonal matrix for  in LR and each in 

 in LP and set D=39 and P=3. Note that Table I only 
presents the complexity of a single mapping function. The number 
of mapping functions used for a particular testing utterance is 
determined by the tree structure and the accumulated statistics, .  
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TABLE I. COMPLEXITY OF EACH MAPPING FUNCTION 
Function LR BC LCB LC LP 

Complexity D+D D P+D P D×P+D 
 

4.2. Experimental Results  
This section presents our experimental results. For each experiment 
set, we present the results for SetA, SetB, SetC, and All test 
conditions, where All is the average WER over 50 testing results. 
4.2.1 Baseline and BF 
Table II lists the baseline results. We used the GI HMM set to 
decode testing utterances without performing model compensation 
to obtain the results. The BF results are also listed in Table II as 
another baseline. Note that the BF results were not from a parallel 
decoding procedure through the three sets of HMMs (one GI and 
two GDs) but through the BF function as presented in Eq. (41).  
 

TABLE II. AVERAGE WER (%) OF BASELINE AND BF 
Test Condition SetA SetB SetC All 

Baseline 5.92 6.69 7.11 6.46 
BF 5.68 6.48 6.90 6.24 

 

4.2.2 ML-based LP versus BC and LR 
Table III presents the results of the LR, BC, and LP mapping 
functions, where the nuisance parameters were estimated based on 
the ML criterion. Note that both LR and BC take a single set of 
HMMs. Therefore, we can obtain three sets of testing results for 
both MLLR and MLBC by using the three HMM sets (one GI and 
two GD HMMs). In Table III, we only present the best MLLR and 
MLBC performances from their individual three sets of results.   

From Table III, we can observe that MLLP achieves better 
performance than MLLR and MLBC for almost all the test 
conditions. This set of results verifies that incorporating local 
information in the training space can enhance the environment 
modeling capacity. With a further investigation, we found that 
MLLP sometimes generates poor results due to over-fittings. We 
handled this over-fitting issue by using the MAP-based estimates. 
The experimental results are presented in the next sub-section. 
 

TABLE III. AVERAGE WER (%) OF ML-BASED ESTIMATE 
Test Condition SetA SetB SetC All 

MLLR 5.65 6.20 6.33 6.01 
MLBC 5.89 6.10 6.62 6.12 
MLLP 5.58 6.14 6.32 5.95 

 

4.2.3 MAP-based LP versus LCB, LC, and LR 
Table IV lists the MAP-based estimates for LCB, LC, and LP. First, 
we observe that MAPLCB clearly performs better than MAPLC, 
and MAPLP outperforms MAPLCB. Second, by comparing Tables 
III and IV, we can see that by using the MAP-based estimate, LP 
can be clearly enhanced. This confirms that a MAP-based estimate 
provides better result when the amount of statistics is limited.   
 

TABLE IV. AVERAGE WER (%) OF MAP-BASED ESTIMATE 
Test Condition SetA SetB SetC All 

MAPLCB 5.46 6.22 5.93 5.86 
MAPLC 5.51 6.44 6.55 6.09 
MAPLP 5.34 6.07 5.94 5.75 

 

Table V lists the MAP-based estimates for LR, LCB, and LP. For 
MAP-based LR, we followed the derivations of Eqs. (21)-(27); this 
implementation is slightly different to the conventional MAPLR 
[3]. Therefore, we name MAP-based LR here in our experiment 
MAPLR with mean prior (MAPLR-MP). From Table V, we can 
observe that MAPLP consistently outperforms MAPLR-MP and 
MAPLCB. Based on an additional set of hypothesis testing results 
(matched pair t-Test [13]), we confirm that the improvements of 
MAPLP over both MAPLR-MP and MAPLCB are significant with 
P-values smaller than 0.05 under SNR=0 and 10 dB conditions.    

TABLE V. AVERAGE WER (%) OF MAP-BASED LR, LCB, AND LP 
SNR (dB) 0 5 10 15 20 All 

      MAPLR-MP 19.33 6.26 2.48 1.06 0.65 5.95 
  MAPLCB 19.20 6.11 2.36 1.00 0.62 5.86 

MAPLP 18.76 6.03 2.35 1.00 0.61 5.75 
 

5. SUMMARY 
We proposed MLLP and MAPLP for environment modeling for 
robust ASR. For MAPLP, we derived the IP densities that include 
multiple knowledge sources. We also discussed the correlation 
between LP with other famous mapping functions and compared 
their performances. For a fair comparison, a same transcription 
reference and a same number of mapping functions were used for 
model compensation for each testing utterance. Experimental 
results on Aurora-2 indicated that for both ML- and MAP-based 
estimates, LP outperforms other mapping functions. Of these 
approaches, MAPLP gives the best performance with a significant 
10.99% (6.46% to 5.75%) WER reduction over the baseline result.  

We believe that the investigated approaches can be combined 
to further enhance model compensation capability. For example, 
LC or BF could be used as the first stage to generate a good initial 
HMM set, and then LR or BC as the second stage can further 
refine the generated HMMs. In addition, we could use LR or BC to 
adapt the multiple HMM sets and then apply a second stage LP or 
LCB to get better performance. Testing and comparing different 
possible combinations of these approaches will be our future work.  
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